Let's try to understand (part of) Iris

Willem Penninckx

The Paper

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer

DISCLAIMER

I'm not an expert

Concurrency is about shared state

Situation	Shared state	Verify this
Shared memory	Memory	No secret overwrites, Counter only increases
Message- passing	Network	Protocol
Input/output	Filesystems, Humans,	Protocol

How to verify when there's concurrency?

"

Monoids and invariants are all you need

– Iris

Invariant: assertion about shared state

(Iris-style) Monoid

"Case study": Verification + concurrency + heap

Proglang: v = malloc() v1 = !v2 v1 := v2 v1 = v2

Attempt #1 Invariant, e.g.: $\exists h \in \text{Heaps}(h)$

"partial knowledge" in monoid

"partial knowledge" in monoid

Local partial knowledge

 $M_a = (\{ot\} \cup \{(g,l)| \ .\ .\ .\ .\ .\ .$, ot , ot , \dots , ot , \dots , ot , ot , \dots , ot , ot Global knowledge

"partial knowledge" in monoid

$$M_a = (\{\bot\} \cup \{(g, l) | g \in \text{Heaps} \cup \{\epsilon_g\} \\ l \in \text{Heaps} \\ g \neq \epsilon_g \to \exists h. \ g = h._h l\} \\, \bot, \dots, ._a)$$

Exercise: what does this mean?

$$(\epsilon_g, \text{emptyheap})$$
$$(\epsilon_g, (1 \mapsto 2, 102 \mapsto 7))$$
$$((1 \mapsto 2, 102 \mapsto 7), (1 \mapsto 2, 102 \mapsto 7))$$
$$(\text{emtyheap}, \text{emtyheap})$$

 $M_a = (\{\bot\} \cup \{(g, l) \mid g \in \text{Heaps} \cup \{\epsilon_q\})$ $l \in \text{Heaps}$ $g \neq \epsilon_q \rightarrow \exists h. \ g = h._h l \}$ $, \perp, \ldots, ._a)$ $(\epsilon_g, l_1)|_a(g, l_2) = (g, l_1._h l_2)$ if $(g, l_1._h l_2) \in |M_a| \setminus \{\bot\}$ $m_{1.a}m_2 = \perp$ other cases Note: in paper composition Is just pointwise (so (\eps, I1) . (\eps I2) is not always \bot) Exercise: what is the neutral element?

Combined:

$$\begin{bmatrix} \left(\epsilon_{g}, \{v1 \mapsto 7\}\right) \end{bmatrix} * \exists h \in \text{Heaps.}\left[(h, \text{emptyheap})\right] * \lfloor h \rfloor$$
$$= \exists h \in \text{Heaps.}\left[(\epsilon_{g}, \{v1 \mapsto 7\}) . a(h, \text{emptyheap})\right] * \lfloor h \rfloor$$
$$= \exists h \in \text{Heaps.}\left[(h, \{v1 \mapsto 7\})\right] * \lfloor h \rfloor$$

Know $v1 \mapsto 7$ in physical state!

Let's prove

$$\left\{ \left[\left(\epsilon_g, \{v1 \mapsto 0\} \right) \right] \right\} \forall 1 := 7 \left\{ \left[\left(\epsilon_g, \{v1 \mapsto 7\} \right) \right] \right\} \{\iota\}$$
Our invariant holds

Strategy

- Open invariant
- Combine thread's ghost state with invar's
 - $\left[\overline{m_1} \right] * \left[\overline{m_2} \right] = \left[\overline{m_1} \cdot \overline{m_2} \right] \longrightarrow \text{Know} \quad a \mapsto _ \text{ in physical state!}$
- Do physical update
 - $\{ \lfloor h[a \mapsto v_2] \} \ a := v_2 \{ \lfloor h[a \mapsto v_2] \rfloor \}$
- Do ghost update
- Split thread's ghost state and invar's
- Close invariant

$$\left\{ \begin{bmatrix} (\epsilon_g, \{v1 \mapsto 0\}) \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} (\epsilon_g, \{v1 \mapsto 0\}) \end{bmatrix} * \exists h \in \text{Heaps.}\left[(h, \text{emptyheap})] * [h] \right\}$$

$$\left\{ \exists h \in \text{Heaps.}\left[(\epsilon_g, \{v1 \mapsto 0\})] * [h] \right\}$$

$$\left\{ \exists h \in \text{Heaps.}\left[(h, \{v1 \mapsto 0\})] * [h] \right\}$$

$$\left\{ \begin{bmatrix} (h'[v1 \mapsto 0], \{v1 \mapsto 0\})] * [h'[v1 \mapsto 0]] \right\}$$

$$\left\{ \begin{bmatrix} (h'[v1 \mapsto 0]] \right\}$$

$$v1 := 7$$

$$\left\{ \begin{bmatrix} (h'[v1 \mapsto 0]] \} \\ v1 := 7 \\ \left\{ \begin{bmatrix} (h'[v1 \mapsto 0]] \} \\ v1 := 7 \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} (h'[v1 \mapsto 0]], \{v1 \mapsto 0\} \end{bmatrix} \right\}$$

Need to update ghost state to close invar

$$\left\{ \begin{bmatrix} (\mathbf{h}'[v1 \mapsto 0], \{v1 \mapsto 0\}) \end{bmatrix} * \lfloor \mathbf{h}'[v1 \mapsto 7] \rfloor \right\}$$

$$\left\{ \begin{bmatrix} (\mathbf{h}'[v1 \mapsto 7], \{v1 \mapsto 7\}) \end{bmatrix} * \lfloor \mathbf{h}'[v1 \mapsto 7] \rfloor \right\}$$

$$\left\{ \begin{bmatrix} (\epsilon_g, \{v1 \mapsto 7\}) \end{bmatrix} * \exists \mathbf{h} \in \text{Heaps.}\left[(\mathbf{h}, \text{emptyheap})] * \lfloor \mathbf{h} \rfloor \right\}$$

$$\left\{ \begin{bmatrix} (\epsilon_g, \{v1 \mapsto 7\}) \end{bmatrix} \right\}$$

Allowed if "does not harm other threads"

"Does not harm other threads"

 $(\epsilon_g, \text{emptyheap}) \rightsquigarrow \{(\epsilon_g, \{72 \mapsto 0\})\}$?

No: other thread might have e.g.

$$\left[\left(\epsilon_g, \{72 \mapsto 123\}\right)\right]$$

 $(\{72 \mapsto 12, 1 \mapsto 3\}, \{72 \mapsto 12\}) \\ \sim \{(\{72 \mapsto 0, 1 \mapsto 3\}, \{72 \mapsto 0\})\} ?$

Yes: cell update

 $a \rightsquigarrow \{b\} \iff \forall f: a.f \neq \bot \Rightarrow b.f \neq \bot$

Increase-only counter

$$M_c = (\{\bot\} \cup \{(g, l) | g \in \mathbb{N} \cup \{\epsilon_c\} \\ l \in \mathbb{N} \\ g \neq \epsilon_g \rightarrow l \leq g\} \\ , \bot, \dots, .c)$$

 $(\epsilon_c, l_1)_{a}(g, l_2) = (g, \min(l_1, l_2))$ if $(g, \min(l_1, l_2)) \in |M_c| \setminus \{\bot\}$ $m_{1,c}m_2 = \bot$ other cases

Wrapping up

- Monoids
- Physical assertion
- Ghost assertion
- Invariants
- $\cdot \rightarrow$

Teaser Episode 3

- Can I model I/O in Iris? (Willem)
- Logical Atomicity (Amin)