
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Modular Semi-automatic
Formal Verification of Critical
Systems Software

Willem Penninckx

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

September 2017

Supervisor:
Prof. dr. B. Jacobs
Prof. dr. ir. F. Piessens, co-supervisor

Modular Semi-automatic Formal Verification of
Critical Systems Software

Willem PENNINCKX

Examination committee:
Prof. dr. A. Bultheel, chair
Prof. dr. B. Jacobs, supervisor
Prof. dr. ir. F. Piessens, co-supervisor
Prof. dr. B. Demoen
Prof. dr. M. Denecker
Prof. dr. ir. E. Steegmans
Prof. dr. M. Huisman
(University of Twente)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

September 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Willem Penninckx, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

This PhD was a challenging project. I was lucky to do this project in a good
environment.

I thank Bart Jacobs for being my supervisor. The quality of his feedback and his
accuracy are phenomenal. I thank Frank Piessens for being my co-supervisor.
Knowing that someone is around with such an exceptional skill in quickly
pinpointing the exact problem is reassuring.

I thank the chair, the members of my examination committee and the members
and former member of my supervisory committee: Adhemar Bultheel, Dave
Clarke, Bart Demoen, Marc Denecker, Marieke Huisman, and Eric Steegmans.

I thank the head of the research group: Wouter Joosen. I thank the members
of Project Office: Katrien, Ghita, and Annick. I thank the experts in
administration and communication: Denise, Liesbet, Nina, Fred, Karin, Margot,
Ann, Anne-Sophie, Esther, Marleen, Karen S., Inge, and Karen V. I thank the
experts of the computer infrastructure and networks: Anita, Jean, Bart S., Greg,
Kris, and Steven W. I also thank everyone else who take care of administrative,
managemental, practical, infrastructural or other activities such that research
and education can happen. I would also like to thank the many people who,
often silently, do administrative, managemental, practical, infrastructural or
other such work besides their official activity.

I thank my office mates, former office mates, and office visitor: Jafar, Mahmoud,
Amin, Gijs, Malte, Wilfried, Javier, and Adriaan. The office was always a nice
place to work. I will miss the philosophical discussions and the games.

As a researcher one meets many interesting people. I will remember many people
for good cooperation on didactical activities, discussing software verification,
discussing life, being supportive, and their very colorful personality. Besides
everyone mentioned above, I also thank Pieter A., Afshin, Willem D.G., Jesper,
Kristof, Lieven, Dominique, Tung, Phil, Mario, Emad, Thomas H., Tom H.,

i

ii PREFACE

Georgios, Roald, Jef, Jonathan, Jan Tobias, Job, Mads, Marco, José, Zubair,
Bob, Jan Smans, Klaas, Thomas v.B., Jo, Marko, Rinde, Alex vdB., Mathy,
Dries, Frédéric, Neline, Tom V.G., and Fan.

I thank many students. Seeing them experiment with their first Python programs
brings back good memories. They make the university more lively.

I thank Anneleen D.B., Irma K., Ingemar S., Aad, and Kevin Vh. for their
support when I was ill.

Besides the classmates mentioned above, I thank Karel, Erika, Wouter, Jo, and
Linard.

I thank Pieter W., my father, and everyone else who was involved in the early
days when I got interested in software.

Special thanks go to Pieter & Nele, and my mother.

This work would not have been possible without funding. This work
received funding from: Interuniversity Attraction Poles Programme Belgian
State (Belgian Science Policy), Research Fund KU Leuven, EU FP7 project
SecureChange, EU FP7 project NESSoS, Microsoft Research Cambridge as part
of the Verified Software Initiative, EU FP7 FET-Open project ADVENT under
grant number 308830, and the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731453 (project VESSEDIA).

Abstract

In the first part of this thesis, we present a case study on successfully verifying
the Linux USB BP keyboard driver. Our verification approach is (a) sound,
(b) takes into account dynamic memory allocation, complex API rules and
concurrency, and (c) is applied on a real kernel driver which was not written
with verification in mind. We employ VeriFast, a software verifier based on
separation logic. Besides showing that it is possible to verify this device driver,
we identify the parts where the verification went smoothly and the parts where
the verification approach requires further research to be carried out.

In the second part of this thesis, we present a program verification approach
that uses an input/output style of reasoning. It can be applied both to programs
that perform input/output, and programs that do not but instead manipulate
memory. The approach is sound, modular, compositional (I/O actions can be
defined on top of other actions) and supports concurrency. It uses Petri nets
and separation logic. We have implemented the approach, both for programs
that do and do not perform I/O, in the VeriFast verifier and sketched how it
can be implemented in the Iris framework for programs that perform I/O.

iii

Beknopte samenvatting

In het eerste deel van deze thesis voeren we een case study uit waarin we het USB
BP toetsenbordstuurprogramma van Linux verifiëren. Onze verificatieaanpak is
(a) sound, (b) ondersteunt dynamische geheugentoewijzing, complexe API regels
en concurrency, en (c) is toegepast op een echt kernelstuurprogramma waarbij
de makers van dat stuurprogramma geen rekening hielden met verificatie toen
dat stuurprogramma geschreven werd. We gebruiken VeriFast, een programma
voor programmaverificatie gebaseerd op separation logic. We tonen niet enkel
aan dat het mogelijk is om zulk een apparaatstuurprogramma te verifiëren,
maar we identificeren ook de delen waar verificatie vlot verliep en die waarbij
verder onderzoek welkom is om de verificatieaanpak te verbeteren.

In het tweede deel van de thesis stellen we een verificatieaanpak voor die
gebruik maakt van een manier van redeneren gebaseerd op het concept
van invoer/uitvoer. Deze verificatieaanpak kan zowel toegepast worden op
programma’s die invoer/uitvoer doen, en programma’s die dat niet doen
en in plaats daarvan geheugen aanpassen. De verificatieaanpak is sound,
modulair, compositioneel (invoer-/uitvoeracties kunnen gedefinieerd worden
bovenop andere acties) en ondersteunt concurrency. Het gebruikt Petri netten
en separation logic. We hebben de aanpak geïmplementeerd, zowel voor
programma’s die wel en die geen invoer/uitvoer doen, in VeriFast en geschetst
hoe de verificatieaanpak kan geïmplementeerd worden in het raamwerk Iris.

v

Contents

Abstract iii

Contents vii

List of Figures xiii

1 Introduction 1

2 Case study: verified keyboard driver 7

2.1 Introduction . 8

2.2 VeriFast . 9

2.3 USB . 12

2.4 Linux’s USB API . 13

2.4.1 Overview of structs . 13

2.4.2 Initialization and cleanup 14

2.4.3 Device ID table . 15

2.4.4 Probe and disconnect 15

2.4.5 URBs . 16

2.4.6 Completion handlers . 16

2.5 Overview of how usbkbd works 17

vii

viii CONTENTS

2.6 Verifying the USB BP keyboard driver 19

2.6.1 Killable asynchrounous resubmittable requests with
completion callback . 20

2.7 Related work . 22

2.8 Conclusions . 24

List of symbols (I/O) 25

3 I/O verification 27

3.1 Introduction . 28

3.2 Programming language: syntax 29

3.3 Programming language: semantics 32

3.4 Specifications: Petri nets . 34

3.4.1 Petri nets . 34

3.4.2 Petri nets as heaps . 37

3.4.3 Programs and Petri nets 40

3.5 Instrumented semantics . 44

3.5.1 Soundness . 47

3.6 Program logic: assertions and proof rules 50

3.6.1 Hoare triples and assertions 50

3.6.2 Hoare triples with multiple starting Petri nets 53

3.6.3 Copredicates . 55

3.6.4 no_op . 56

3.6.5 Interleaving . 57

3.6.6 Soundness . 58

3.7 Examples . 60

3.7.1 Tee . 60

3.7.2 Read files mentioned in a file 60

CONTENTS ix

3.7.3 Print any string of the grammar of matching brackets . 64

3.7.4 Turing machine . 64

3.7.5 Mechanical verification of the examples 66

3.8 A monoid for verifying input/output 67

3.9 Related work . 74

3.10 Conclusions and future work 76

List of symbols (in-memory) 77

4 I/O style verification of memory-manipulating programs 81

4.1 Introduction . 82

4.2 Warmup without concurrency 84

4.3 Concurrency . 87

4.3.1 I/O threads . 87

4.3.2 Places . 90

4.3.3 Tokens, ghost cell families, fractions and atomic spaces . 91

4.3.4 Split and join . 96

4.3.5 I/O actions . 97

4.3.6 Main . 101

4.3.7 Formalization: Concurrent programming language . . . 103

4.3.8 Formalization: Atomic blocks 113

4.3.9 Formalization: Ghost cell families 116

4.4 Reusability . 118

4.4.1 Example: Reusable buffer without I/O 119

4.4.2 Example: Reusable putchar 120

4.4.3 Example: Reusable print_hi with I/O style specifications 122

4.4.4 Example: main specification without I/O style spec . . 122

x CONTENTS

4.4.5 Example: main implementation calling I/O style specified
functions . 123

4.4.6 Formalization: Higher order functions 125

4.5 Reading . 132

4.5.1 Prophecies . 133

4.5.2 Recursive functions . 134

4.5.3 Example: reading . 134

4.5.4 Formalization: Prophecies 140

4.5.5 Formalization: Recursive functions 142

4.6 Multiple instances of the same data structure 144

4.6.1 Example: putchar (multiple instances supported) 145

4.6.2 Example: Writer cat reader 146

4.7 Formalization: Erasure . 147

4.8 Soundness . 149

4.9 Conclusions, related work, and future work 152

5 Conclusion 155

A Proofs I/O verification approach 159

A.1 Unique weakest precondition 159

A.2 Safe implies trace simulation 162

A.3 Weakest precondition implies safe 169

A.4 Proven Hoare triple implies weakest precondition 171

B Proofs in-memory I/O 185

B.1 Soundness proof in-memory I/O 185

B.2 Recursion . 207

Bibliography 211

CONTENTS xi

List of publications 219

List of Figures

2.1 The VeriFast IDE, showing for the current step (Í) in symbolic
execution, the symbolic store (Ê), the path conditions (Ë), and
the symbolic heap (Ì). 9

2.2 Overview of some structs in Linux’s USB API 14

2.3 Flow of error free, low concurrent, single keyboard case 18

3.1 Step semantics . 32

3.2 Example Petri net with two executions steps 35

3.3 Execution of a Petri net / heap 40

3.4 Relation between Petri net traces and program traces. ε∗ ranges
over finite Petri net traces that only consist of epsilons, e.g.
〈ε, ε, ε〉 and 〈〉. 41

3.5 One Petri net that only has one execution 41

3.6 One Petri net with two executions 42

3.7 Set of Petri nets . 43

3.8 Definition of h1
ε−→
∗
h2: it expresses that there is a finite number

of epsilon steps from h1 to h2. (used in Def. 19 on page 45) . . 45

3.9 Definition of a safe trace for a start heap and a postcondition. . 47

3.10 Satisfaction relation of assertions 51

3.11 Rewrite rules . 52

3.12 Proof rules . 53

xiii

xiv LIST OF FIGURES

3.13 Multiple starting Petri nets for the same Hoare triple 55

3.14 Specification and implementation of the Tee program 61

3.15 Proof outline of the tee_out and main function of the tee program
(〈〉 is the empty list) . 62

3.16 Specification of a program that prints the contents of all files
whose filenames are in a given list. This list is not static, it is
read from a file “f”. 63

3.17 Specification of a program that is allowed to output any string
of the matching brackets grammar. 64

3.18 The relation h τ−→
∗
h . 69

4.1 Every gray box is one I/O thread of this Petri net 89

4.2 Parallel composition (used in Fig. 4.3 on page 106) 105

4.3 Step semantics. We identify closed expressions with their values. 106

4.4 Outcomes . 109

4.5 Satisfaction relation of assertions. We identify closed expressions
with their values. 110

4.6 Proof rules . 112

4.7 Step semantics for atomic blocks 114

4.8 Proof rules for atomic blocks 114

4.9 Ghost cell families step semantics 116

4.10 Ghost cell families proof rules 117

4.11 Proof rules for higher order functions 126

4.12 Satisfaction relation of assertions for higher order functions
(extends Fig. 4.5 on page 110) 132

4.13 Step semantics for prophecies 140

4.14 Proof rules for prophecies . 141

4.15 Derived proof rule for recursive functions 143

4.16 Definition of erasure . 148

Chapter 1

Introduction

While we used to say software is becoming commonplace, we should say now that
software is already almost everywhere. Not just your personal computer runs
software. Electric bikes, airplanes, televisions, nuclear reactors, cars, cellphones,
elevators, washing machines, . . . they all run on software. Software is written by
humans and therefore can contain bugs, i.e. errors in the software, somewhat
similar to an inconsistency in the plot of a book or an error in a thesis text.
Such bugs do not have to be a big problem for some applications, but for others
it can have very serious consequences.

For example, it was confirmed that in 2004 an elevator contained a software
bug that caused the elevator to descend without completely closing the doors
[44, Sec. 5.1.1].

In 2015 the US Federal Aviation Administration issued a directive which
explained that the latest Boeing airplane, the 787 Dreamliner, contained a
software bug consisting of an integer overflow [22]. If the airplane (or rather its
generators) are not manually reset or shutdown after 248 days, it loses electric
power which could result in loss of control of the airplane. If this happens
during e.g. take-off, this can result in a catastrophy [27].

Bugs can also cause or play a role in economical losses. For example, a blackout
in the US in 2003 was estimated to cost between $7 and $10 billion [77].
The blackout was at least largely caused by a race condition1 in the alarm-

1We say software has a race condition if the result of a calculation in that software depends
on the unpredictable order of two parallel or interleaved executions of two inner pieces of
software inside the software. If unintended, a race condition can lead to incorrect behavior of
the software.

1

2 INTRODUCTION

management system. Because of this, the operator did not receive updated
information with which he could have prevented failures.

Also everyday security and privacy is at risk because of bugs. In 2014, critical
bugs were found in all major TLS libraries [41], i.e. pieces of software (reused
in other software) responsible for encrypting online connections such as for
online banking and accessing e-mail. Microsoft’s Schannel had a remote code
execution vulnerability [43] allowing an attacker to run arbitrary code on a
server. Apple’s SecureTransport suffered from an incorrect (and misindented)
“goto fail” [21] allowing an attacker to spoof a server. OpenSSL — the only
one gaining widespread mainstream media attention for its flaw — contained a
buffer overread [53]. Other libraries had flaws as well.

Traditional strategies to achieve a level of safety for a mechanical device cannot
be applied to software [67]. For strategies for mechanical devices it is normal to
focus on physical faults such as wear, corrosion, mechanical stress, etc. for which
the failure rate can even be known because of historic use of the components.
Software does not have physical faults but can still have (many) design faults.

To (try to) address such design faults, multiple strategies exist for multiple
phases or activities of the development process, but we will only focus on errors
in the implementation, and not on errors in e.g. requirements analysis. Such
strategies include various testing strategies and code review strategies, and
avoiding or forbidding dangerous patterns such as global variables, lengthy
functions, and high complexity in code according to some metric.

Depending on the safety and reliability required and on how which strategies
are used, this might or might not be good enough. Butler and Finelli [9] argue
that achieving higher reliability through testing, requires spending more time
on testing, in such a way that for ultra reliable systems, the amount of time
one should spend on testing becomes infeasible.

Testing is the process of executing the program multiple times, and each time
the program is executed, checking whether the execution contains an error. So
testing searches incorrect executions in the set of all executions. The reason
testing becomes infeasible, is because this set of all executions can be huge,
because of large inputs, timings on how concurrent pieces of software are
executed in parallel and/or interleaved, an unbounded execution length of the
program, and a huge amount of memory the program can address. Testing is
then like searching a needle in a haystack, even though it might not feel like this
when one is happy to not find a needle, which does not imply there are none.

Luckily, there are approaches that consider all executions, namely sound formal
verification approaches for software.

INTRODUCTION 3

• Verification is the act of checking something, in this context properties
about the software such as that there are no executions that crash.

• Formal means we apply mathematical methods.

• An approach for checking something is sound if it finds all violations of
the property checked, contrary to unsound approaches which can miss
some. Testing is typically unsound since it can miss errors. Note that
while a sound approach is preferable as is, other factors come into play
when choosing which approaches to use, such as the monetary cost of
applying the approach, which can mean an unsound approach can be
preferred above a sound approach in some situations.

• While usually implicit, we should mention that we only consider static
verification approaches, which means that the approach analyses the
program itself without executing it. This contrasts with dynamic
approaches that perform checks during execution of the program. A
dynamic approach can detect an error during execution, while a static
approach can detect the error while the program has never been executed
at all. Similar to unsound approaches, dynamic approaches can be very
valuable too.

In this thesis we focus on a (family of) sound formal verification approach(es)
called Hoare logic(s). When using Hoare logic [31] one writes two logic formulas
that constrain the program state: a precondition and a postcondition. The
program is considered correct if for every state for which the precondition holds,
and any program execution starting from such a state, the program does not
crash and the postcondition is true for the state obtained at the end of the
execution.

Separation logic [68, 49] is an extension of Hoare logic that adds support for
easier verification of programs that have pointer manipulation and aliasing.
Aliasing is the situation where two different variables in the program point to
the same memory cell [12]. Separation logic deals with aliasing by allowing
formulas to contain subformulas that describe separate parts of the memory
state. This also allows local reasoning [50] by only describing the relevant parts
of memory in the preconditions and postconditions, in contrast to describing
the whole memory footprint of the whole program.

We should mention separation logic is not the first approach to support pointer
manipulating programs, but as Bornat et al. points out, it “[makes] earlier
attempts to prove pointer-mutating programs [...] look ridiculously complicated
and ad-hoc”[7].

4 INTRODUCTION

The observation that separation logic supports local reasoning, turns out to not
only be applicable to reasoning about data, but also to reasoning about threads:
Concurrent separation logic [51] makes the observation that in order to verify a
parallel program consisting of two threads one can formulate an invariant that
“describes” the shared data that is read and written by the threads in critical
sections, and verify each thread independently. The resulting postcondition is
then just the combination of the postconditions of the two threads.

Parkinson and Bierman [54] introduce support for abstraction: by using abstract
predicates with arguments in specifications (preconditions and postconditions),
and defining which concrete state (or other abstract predicates) these abstract
predicates relate to, one can write specifications in terms of the abstract
predicates instead of in terms of the inner memory representation, i.e. write
specifications that hide the inner workings of the program (or library). This
allows one to reason at the level of the abstraction.

Bornat et al. [7], building further on work by Boyland [8], add support for
marking memory as shared amongst threads (read-only), and not shared (and
therefore ead-write) while allowing combining shared read-only memory (i.e.
merging the split permissions) into unshared read-write, in a context where the
number of permission splits is not static.

Gotsman [28] adds support for locks that can be created, stored, and destructed
during the execution of the program, and links the invariant to the lock, instead
of to the parallel composition as in concurrent separation logic. This allows to
use real-world locks such as POSIX mutexes.

While one can use the theoretical developments outlined above for program
verification using using pen and paper, in practice this is not advisable and
it is better to use software tools. In other words, we use software to verify
software. Tools that use separation logic include VeriFast [34, 35], SmallFoot [4],
jStar [20], Ynot [48] (a Coq [32, 63] library), and Grasshopper [64].

Using tools can be quicker than doing the same work on paper, but an important
advantage of tools is also that they are more reliable: when performing
verification on paper, one can easily make an error that goes undetected.
Another important advantage of some tools is that while a piece of paper does
not give much feedback, a tool does. A tool can be a great teacher that is
always available and (if the tool is fast) provides a very short feedback loop.

The only way to know whether an approach is actually applicable in the real
world, is to try to apply the approach on a real world application. In Chapter 2,
we successfully apply the verification tool VeriFast on usbkbd. VeriFast is a
tool that implements the separation logic based approaches outlined above.
usbkbd is a USB keyboard driver that is shipped with the Linux kernel. The

INTRODUCTION 5

properties verified are that none of the driver’s executions crash, that there
are no unintended race conditions, and that it does not violate a number of
constraints of the APIs it uses, of which a part is complex and asynchronous.

Something missing in this story in input/output (I/O): programs do not only
perform calculations and read and write to memory, but also communicate
with the outside world: writing to screen, reading from keyboard, reading from
and writing to files, driving external hardware such as servos, and sending and
receiving network messages. Output is the behaviour as observed by an outside
actor (such as a human) and input is the behaviour of such actor as observed by
the program. The act of reading input by the program can, depending on the
setting, also be observed by the outside actor. The output typically depends on
the input: the output on a display of a calculator should be different depending
on which sum the user has entered as input. The order of the input/output
performed is important: we want the printer to first print page one and then
page two.

I/O verification is the act of verifying that the I/O performed by the program
is correct: we do not want the program that is supposed to read files to actually
format the harddisk or read the file in an incorrect order.

We develop a new approach to verify Input/Output (I/O) properties of programs
(Chapter 3). While some work has been done on I/O verification in a more
simple setting, such as only supporting programs that always terminate [74]
and only allowing I/O in the main loop of the program [5], our approach does
not suffer from these limitations and furthermore supports modularity and
compositionality. Our approach also supports some degree of underspecification
and blends in with other approaches that address other aspects of the software,
such as aliasing, locks, etc.

The difference between I/O and non-I/O can be a thin line: the program that
writes to a file, can be writing to a filesystem in RAM (such as Linux’s tmpfs),
to a filesystem on disk (which can both be considered as memory or as a device
for which input/output commands are send/received), or to a filesystem on
network (sending/receiving network messages, such as NFS).

The program that writes the file is unaware of whether the filesystem is
implemented by performing lower-level I/O actions, or by manipulating memory:
in both cases the program uses the same filesystem API. We do not want to
verify the program twice (once for a filesystem API in an I/O setting, and once
for a filesystem API in a memory-manipulating setting). Ideally, the filesytem
API should have one specification, both the I/O implementation and in-memory
implementation are verified against this specification, and the program that
uses the filesystem API is only verified once.

6 INTRODUCTION

A similar situation is the java.io.InputStream abstract class of Java’s
standard library, which provides a stream API. The user of this API can ask
an object of the class for the next n bytes. This abstract class is implemented
both by a class java.io.ByteArrayInputStream which allows reading from a
buffer in memory (not performing I/O), and a class java.io.FileInputStream
which allows reading from a file in a filesystem (performing filesystem I/O).
To write a specification for InputStream, one would have to come up with a
specification that both the subclass performing I/O and the subclass performing
memory-manipulation can implement.

To the best of our knowledge, no verification approach exists that supports such
uniform specifications for I/O and in-memory. In Chapter 4 we develop such
an approach that uses the same I/O style specifications of Chapter 3.

Chapter 5 wraps up the conclusions made throughout the thesis.

Chapter 2

Case study: verified keyboard
driver

Publication data

• W. Penninckx, J. T. Mühlberg, J. Smans, B. Jacobs, and F. Piessens.
Sound formal verification of Linux’s USB BP keyboard driver. In NASA
Formal Methods, volume 7226, pages 210–215. Springer, April 2012

• P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and
F. Piessens. Software verification with VeriFast: Industrial case studies.
Science of Computer Programming, 82(1):77–97, March 2014

Abstract

Case studies on formal software verification can be divided into two categories:
while (i) unsound approaches may miss errors or report false-positive alarms
due to coarse abstractions, (ii) sound approaches typically do not handle certain
programming constructs like concurrency and/or suffer from scalability issues.
This chapter presents a case study on successfully verifying the Linux USB
BP keyboard driver. Our verification approach is (a) sound, (b) takes into
account dynamic memory allocation, complex API rules and concurrency, and
(c) is applied on a real kernel driver which was not written with verification
in mind. We employ VeriFast, a software verifier based on separation logic.
Besides showing that it is possible to verify this device driver, we identify the

7

8 CASE STUDY: VERIFIED KEYBOARD DRIVER

parts where the verification went smoothly and the parts where the verification
approach requires further research to be carried out.

2.1 Introduction

The safety and security of today’s omni-present computer systems critically
depends on the reliability of operating systems (OS). Due to their complicated
task of managing a system’s physical resources, OSs are difficult to develop and
to debug. As studies show, most defects causing operating systems to crash are
not in the system’s kernel but in the large number of OS extensions available
[1, 11]. In Windows XP, for example, 85% of reported failures are caused by
errors in device drivers [1]. As explained in [11], the situation is similar for
Linux and FreeBSD: error rates reported for device drivers are up to seven
times higher than error rates stated for the core components of these OSs.

A lot of research aims to prove the correctness of programs. However, not
much work has been carried out to test whether the results of this research is
applicable to complex real-world programs where correctness is important, like
operating systems drivers. To work towards addressing this question, we apply
a separation-logic based verifier, VeriFast [34], on a device driver taken from
the Linux kernel.

The driver code subject to verification is Linux’s USB Boot Protocol keyboard
driver. While being small, this driver contains a bigger than expected subset of
kernel driver complexity. It involves asynchronous callbacks, dynamic allocated
memory, synchronization and usage of complex APIs. During verification, we
identified and fixed a number of bugs. For these bugs we submitted patches
that have been accepted by the driver’s maintainer and are included in Linux12.

In the remainder of this chapter we briefly introduce VeriFast and the device
driver. We outline the verification of the driver and elaborate on the challenges
involved. Finally, we discuss related work and draw conclusions.

VERIFAST 9

Figure 2.1: The VeriFast IDE, showing for the current step (Í) in symbolic
execution, the symbolic store (Ê), the path conditions (Ë), and the symbolic
heap (Ì).

2.2 VeriFast

The verifier we apply to the USB BP keyboard driver is VeriFast. To use VeriFast
to verify a program, one writes extra annotations written as comments and thus
ignored by the compiler. One kind of such annotations are preconditions and
postconditions. For example:

int increase(int x, int y)
//@ requires x + y <= INT_MAX && x + y >= INT_MIN;
//@ ensures result == x + y;
{

return x + y;
}

1https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
c196adf87514560f867492978ae350d4bbced0bd

2https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=
a2b2c20ba2f6e22c065f401d63f7f883779cf642

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=c196adf87514560f867492978ae350d4bbced0bd
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=c196adf87514560f867492978ae350d4bbced0bd
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a2b2c20ba2f6e22c065f401d63f7f883779cf642
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a2b2c20ba2f6e22c065f401d63f7f883779cf642

10 CASE STUDY: VERIFIED KEYBOARD DRIVER

The body of the function is written in C, but the annotations are written in
another language where integer addition is always defined and not modulo a
value different from one.

For this example, it suffices to say that the state of the program consists of the
values assigned to the variables (here the arguments x and y), and to the return
value. Some states satisfy the precondition, some do not.

When executing VeriFast with this example as input, VeriFast will perform some
checks. One check is that for any initial state that satisfies the precondition, any
execution starting from that state does not crash. Another check is that any
such execution that terminates, yields a state that satisfies the postcondition.

For a compiler that uses 32 bit integers and for this trivial example, there are
18446744073709551616 possible initial states of which 13835058048839712768
satisfy the precondition, and every initial state has one possible execution
(because the example does not have nondeterminism like memory allocation
or concurrency). For a nontrivial program, checking each individual execution
separately is infeasible.

In order to check all these executions, VeriFast uses symbolic execution [3].
Instead of using a concrete state consisting of a concrete store that maps
variables to values, VeriFast uses a symbolic state that contains a symbolic
store (see Ê in Fig. 2.1 on the previous page) that maps variables to terms.
In our example, the variables x and y could be mapped to the terms x and
y. The symbolic state also contains a set of terms called assumptions or path
conditions (Ë in Fig. 2.1 on the preceding page) that express the properties
known so far in the symbolic execution. In our example, such a property can be
x + y ≤ INT_MAX∧ x + y ≥ INT_MIN. It is known because of the precondition.

Function calls are not verified by (symbolically) executing the body of the
function. Instead, a function call is verified by checking that the precondition of
the callee holds for the current symbolic state and assuming the postcondition
of the callee. Loops are annotated by hand with loop invariants.

While one symbolic execution maps to potentially many concrete executions,
a program can still have multiple symbolic executions. The precondition can
contain a disjunction P1 ∨ P2. In that case, VeriFast performs one symbolic
execution where P1 is added to path conditions, and another one where P2
is added. Similarly, to verify an if-then-else statement, VeriFast performs a
symbolic execution where the then-branch is executed and the condition is
added to the set of assumptions, and another one where the else branch is
executed and the negation of the condition is added.

So far we only considered assertions (such as the assertion of the precondition)

VERIFAST 11

that are terms. An assertion can also be a points-to assertion of the form a 7→ b,
where a and b are terms. This expresses that the heap consists of one cell that
maps address a to b.

To check whether such an assertion holds for a symbolic state, the symbolic state
also contains a symbolic heap (Ì in Fig. 2.1 on page 9) which is a multiset of
assertions that are either points-to assertions or predicate assertions (explained
later).

Another kind of assertion (not present in the symbolic heap) is the separating
conjunction P1 ∗ P2 where P1 and P2 are assertions. It expresses that the heap
can be split into two disjoint parts where P1 holds for one part and P2 for the
other [69].

To verify a function call, VeriFast also checks that the points-to assertions
(and predicate assertions) that are present in the precondition of the callee are
also present in the symbolic heap (possibly syntactically different), removes
them from the symbolic heap, and adds the points-to assertions (and predicate
assertions) that are present in the postcondition.

To provide abstraction and to describe complex memory data structures, the
user can define predicates in annotations. A predicate definition consists of
a name and parameters, and a body which is an assertion. Assertions can
contain predicate assertions, consisting of a predicate name and terms serving
as arguments. The heap can also contain predicate assertions. The user has to
write explicit annotations to fold and unfold (also called close and open) such
assertions.

VeriFast also supports ghost data structures (to e.g. represent a mathematical
list) and lemmas. Lemmas are similar to C functions and can modify the heap,
but VeriFast checks that lemmas terminate and are only called from annotations
(not from C code).

Concurrency is supported by associating a real number (called fraction) from
(0, 1] to every points-to assertion and predicate assertion, similar to [7]. So the
heap can contain a points-to assertion for a certain fraction size. A points-to
assertion of fraction size one denotes read and write permission, one of size less
than one denotes only read permission. Multiple threads can obtain different
fractions of the same permission.

Specifications for (spin)locks are done in a fashion similar to [28]: with a lock
a handle and an invariant are associated. An invariant is a predicate that
represents the permissions protected by the lock. A fraction of the handle allows
acquiring the lock, which yields (adds to the symbolic heap) the invariant which
represents the permissions protected by the lock.

12 CASE STUDY: VERIFIED KEYBOARD DRIVER

The VeriFast tool is available at [37]3. A formalization of a core subset of
VeriFast [72] and a tutorial on VeriFast [36] are also available.

2.3 USB

Universal Serial Bus (USB) is a standard for interconnecting devices. Version
2.0 of this standard is described in [23]. A USB network consists of exactly one
host (usually a desktop computer) and one or more USB devices [23, p. 16]. A
USB device can be a USB hub or a function, such as a USB keyboard. With
the host is always a hub associated. A USB network should be considered as a
tree-formed network with the host at the root, the USB hubs at intermediate
nodes and functions at the leaves. Communication is always initiated by the
host; this implies that the host polls[23, p. 18] if it knows data might be available
(but an interrupt-like interface may be built on top of polling).

A USB device has endpoints; an endpoint can be considered as the end of one
communication channel from the USB host to the USB device [23, p. 33]. An
endpoint has a number, and a direction: IN for data transmission from the
device to the host4 and OUT for transmission from the host to the device.
Every USB device has an endpoint 0 IN and an endpoint 0 OUT. This is used
for initialization and sending general commands.

An endpoint is associated with a transfer type; 4 transfer types exist: isochronous
(stream-like, e.g. webcam), control (commands with irregular frequency),
interrupt (latency is important, low frequency, e.g. mouse movements) and
bulk (e.g. harddisk data transfer).

Endpoints are grouped into interfaces; an interface represents one functional
unit of a device [23, p. 224]. For example, a keyboard with an integrated
touchpad might have one interface for the keyboard itself and one interface
for the touchpad. Every interface has an interface number and an altsetting
number. Multiple interfaces with the same interface number but a different
altsetting number can exist.

Interfaces are grouped into configurations. Configurations can indicate different
powering-settings. A device has one or more configurations (usually one [17]).
When a device is in use, it is set to use one of its configurations.

3This is a newer version than the one used for performing verification in 2011; timings and
lines of annotations reported are as of 2011.

4Even for communication that is conceptually from the device to the host, polling is still
used.

LINUX’S USB API 13

USB devices provide information about themselves in descriptors [23, p. 260].
There exists a descriptor for the device, its configurations, the interfaces
of the configurations and the endpoints. They are called device descriptor,
configuration descriptor, interface disciptor and endpoint descriptor respectively.

For common devices like USB flash drives, separate USB specifications exist
that describe protocols to communicate with these devices. This way, an end
user does not need to install a vendor-specific driver for every USB device he
uses, since usually the generic driver shipped with his operating system can be
used.

If a new USB device is attached, the operating system should know which
driver(s) to load. To easy this process, USB devices advertise a class, subclass
and protocol number in their device descriptor and interface descriptor, which
indicate what kind of device the device is. The operating system can use this
information to (try to) load a device driver. For example, a standardized USB
mouse might have class 3 (Human Interface Device) and protocol 2 (mouse)
[24]; a flash drive might have class 8 (mass storage) and subclass 6 (SCSI)
[25]. The class, subclass, and protocol numbers are defined in individual class
specification documents5.

2.4 Linux’s USB API

2.4.1 Overview of structs

From a device driver’s point of view, the following structs are important in
Linux’s USB API (see also Fig. 2.2 on the following page).

• usb_device represents a physical USB device. Remember that a USB
device might consist of multiple functional units.

• usb_interface represents one functional unit of a USB device. A USB
device driver is thus bound to usb_interfaces, not to usb_devices.
A usb_interface should not be considered as a USB interface, but rather
as a grouping of different USB interfaces with the same interface number
but different altsetting numbers.

• usb_device_descriptor, usb_config_descriptor, usb_interface_-
descriptor and usb_endpoint_descriptor represent the descriptors.

5Available on http://www.usb.org/developers/devclass_docs/.

14 CASE STUDY: VERIFIED KEYBOARD DRIVER

Figure 2.2: Overview of some structs in Linux’s USB API

• usb_host_config, usb_host_interface, usb_host_endpoint wrap
around usb_config_descriptor, usb_interface_descriptor and usb_-
endpoint_descriptor respectively. usb_host_interface represents
one altsetting of one interface.

2.4.2 Initialization and cleanup

A USB driver should register itself to the USB core by calling usb_register.
This is typically done in the initialization function of the kernel module, which
is called when the kernel module is loaded dynamically into the kernel.

usb_register expects a pointer to a struct as argument with the following
fields:

• The name of the USB driver

• A pointer to a probe callback. This callback that will be called when
a new USB interface (thus a USB function) is detected that this driver
might support.

• A pointer to a disconnect callback. This callback that will be called when
a USB function is disconnected which this driver was responsible for.

• A pointer to a table describing what kind of USB functions this driver
supports. This table is called the device ID table.

LINUX’S USB API 15

The USB driver is typically unregistered (using usb_deregister), using the
same pointer to the struct as used when registering. Deregistering the USB
driver is typically done in the exit function of the USB driver kernel module,
which gets called when the kernel module is unloaded.

2.4.3 Device ID table

Remember that the device ID table is passed to usb_register. When a new
USB interface becomes available, the device ID tables of different kernel modules
will be scanned. The descriptors of the USB device will be matched against
the entries of the device ID table. If a match succeeds, the USB device driver
(kernel module) will be “asked” if it really can support the USB interface. This
is done by calling the probe callback of the USB driver. This way, only the
probe function of interested USB drivers will be called. If a new USB driver is
loaded, the above matching process is also performed for the device ID table of
this new USB driver.

A USB device driver is supposed to include the macro MODULE_DEVICE_TABLE
(usb, usb_id_table) in its sourcecode, with usb_id_table the device ID
table, and “usb” left as is. This macro is used to known which kernel module
should be loaded if a new USB device is connected6. Note that this is also
useful for automatically loading kernel modules at boot time.

The device ID table of usbkbd is:

static struct usb_device_id usb_kbd_id_table [] = {
{ USB_INTERFACE_INFO(

USB_INTERFACE_CLASS_HID,
USB_INTERFACE_SUBCLASS_BOOT,
USB_INTERFACE_PROTOCOL_KEYBOARD

)
},
{ } /* Terminating entry */

};

2.4.4 Probe and disconnect

A probe callback gets as first argument a pointer to an usb_interface. The job
of the probe callback is to decide whether the given usb_interface is supported

6Source: Documentation/usb/hotplug.txt in the kernel source

16 CASE STUDY: VERIFIED KEYBOARD DRIVER

by the particular USB device driver, and set up data structures such that the
driver can perform its job as device driver for the given usb_interface. The
entry of the device ID table that matched with the usb_interface is given as
second argument to the probe callback. If the probe function judges it cannot
handle the given usb_interface, a negative error code must be returned, and
zero otherwise.

A device driver typically has an open function called when the device which the
driver is responsible for is opened. The probe callback should not take over the
job of the open function.

The USB API facilitates associating driver specific data to the usb_interface
(with the functions usb_set_intfdate and usb_get_intfdate). usb_set_-
intfdata is typically called in the probe callback. The USB driver can handle
multiple USB interfaces concurrently, so this way the USB driver can associate
state with the different USB interfaces.

2.4.5 URBs

Both sending data to and receiving data from a USB device is done using USB
Request Blocks (URBs), which could best be considered as a data structure in
the Linux API. To use URBs, they have to (1) be allocated, (2) be initialized, (3)
be submitted. After submitting, they will (4) complete after a while. Submitting
an URB does not block.

URB initialization requires specifying the transfer type (control, bulk, or
interrupt), a direction (IN or OUT), a completion handler callback which
called when the URB data is sent or received, a buffer of data that will be send
or be filled, and whether this buffer is already DMA mapped, amongst other
technicalities which we will not discuss here.

In case the device driver allocates DMA mapped memory itself it must free this
in a special way (not with kfree).

An URB can be cancelled with usb_kill_urb This function blocks and makes
sure the completion handler of the URB is not in execution when this function
returns. If a driver does not use an URB anymore, it must call usb_free_urb.

2.4.6 Completion handlers

Remember that the completion handler callback is called when the URB finishes
sending or receiving data. The completion handler callback receives the URB

OVERVIEW OF HOW USBKBD WORKS 17

as argument. It examines the status of the URB (which is just the field status
in the URB struct), because the URB might also complete because of an error.
The completion handler can access the data inside the buffer.

Completion handlers (as well as the probe callback) are executed in interrupt
context; code that executes for an interrupt is said to be executing in interrupt
context. This applies both to code executed because it is an interrupt handler
called when an interrupt happens (this is called the “top half”), or code that
should be executed for an interrupt but can be scheduled to be executed a bit
later and is interruptible by (other) interrupts (this is called the “bottom half”)
[71, 42].

Code being executed in interrupt context cannot call certain other functions
(also not indirectly by calling functions that call such functions), or can not
call certain functions functions with(out) certain arguments or flags, such as
kmalloc or the function to send an URB. Mutexes are also disallowed, but
spinlocks are.

A completion handler for receiving data will typically send an URB, otherwise
the communication with the USB device will simply stop here. For sending an
URB, the original URB (that has completed now) can be reused.

2.5 Overview of how usbkbd works

The driver subject to verification is Linux’s USB Boot Protocol keyboard driver,
named usbkbd7. This section gives a high-level overview of how the driver works
(see Fig. 2.3 on the next page), leaving out details concerning concurrency and
the exact API usage.

On loading, usbkbd registers itself with the USB API. When a new keyboard is
attached, the API calls the usb_kbd_probe function of usbkbd. usb_kbd_probe
checks whether the driver can handle the attached keyboard, and if so initializes
a USB Request Block (URB). An URB is an asynchronous request that can
be used to send or receive data from a USB device. The purpose of the URB
initialized here is to receive key-presses and key-releases. This URB is named the
IRQ URB. usb_kbd_probe initializes another URB for updating the LED status
(e.g. numlock) named the LED URB. usb_kbd_probe then registers a new input
device with the input API to make the keyboard available to applications. When
the newly created input device is opened, usbkbd’s usb_kbd_open callback is
invoked and usb_kbd_open submits the IRQ URB. When a key is pressed or

7The driver’s source file, usbkbd.c, is located in drivers/hid/usbhid/ in the Linux kernel
distribution available from https://www.kernel.org/.

https://www.kernel.org/

18 CASE STUDY: VERIFIED KEYBOARD DRIVER

Figure 2.3: Flow of error free, low concurrent, single keyboard case

VERIFYING THE USB BP KEYBOARD DRIVER 19

released, the URB completion callback usb_kbd_irq is called. usb_kbd_irq
parses the data received from the keyboard and reports key-presses and releases
to the input API. It then resubmits the URB. When the input API decides the
LED status needs to be changed, the usb_kbd_event callback is invoked. This
callback checks whether a LED URB is in progress, and if not submits the LED
URB with the appropriate data. Otherwise, it stores the new LED info in a
buffer. When the LED URB completion callback usb_kbd_led is called, this
callback checks whether new LED info has appeared while the LED URB was
in progress. If so, usb_kbd_led resubmits the LED URB with the new LED
info.

2.6 Verifying the USB BP keyboard driver

Verification of the driver is against the original API. Wrapper functions are
only used in a few cases where API functions return a struct (i.e. not a
pointer to a struct) because this is currently not supported by VeriFast. The
APIs that usbkbd uses are the USB API, the input API, spinlocks, and some
generic functions like memcpy. Verification thus consists of (1) writing formal
specifications for these APIs, based on official documentation and reading the
API implementation for the underspecified or undocumented parts, and (2) of
adding annotations to usbkbd. These annotations consists of contracts (pre- and
postconditions written in separation logic), predicates to describe data structures,
predicate family instances to instantiate callback function contracts, lemmas
(i.e. ghost functions), and ghost-code like folding and unfolding predicates.

The verified properties are freedom of data races in the presence of concurrent
callbacks, freedom of illegal memory accesses, and correct API usage. This does
not include a formal proof of correctness of the hand-written API formalization.
We do not verify functional correctness.

usbkbd is one of the smallest Linux kernel drivers. It consists of 426 lines of C
code (including blanks and comments). VeriFast reports 329 lines of actual code
and 822 lines of annotations. The API specifications count up to 769 lines of code.
VeriFast can be launched for this driver with verifast -I . -prover redux
-c usbkbd_verified.c. On an Intel L9400 1.86GHz running the verifier takes
about one second. The annotated sources of usbkbd, specifications for the used
APIs and the patches submitted to the driver’s maintainer are shipped with
VeriFast [37] under the directory examples/usbkbd.

Writing Specifications for the Input API and some generic functions
like kmalloc was rather straightforward. API rules include forbidding double

20 CASE STUDY: VERIFIED KEYBOARD DRIVER

frees, requiring when registering input devices that the given callbacks are real
function pointers with a contract not conflicting with some rules, etc.

Killable URBs were rather tricky to get verified for the LED URB. Because
usb_kbd_event and usb_kbd_led both submit URBs, they are synchronized
with a spinlock. A C boolean led_urb_submitted represents whether the
URB is in progress, and thus also whether the URB data (necessary for URB
submitting) is not owned by the lock invariant. After killing the URB, the URB
data must be taken out of the lock invariant in order to free it, i.e. VeriFast must
be convinced led_urb_submitted is false. We used a ghost-counter (associated
with a predicate of which a uniqueness-proof must be provided on creation)
named cb_out_count that yields a ticket on increase and ensures the counter is
at least n high if n such tickets are owned. Another counter, killcount, keeps
track of the number of URB submits. By making sure killcount tickets of
cb_out_count are obtained when killing the URB, we can prove cb_out_count
is at least as high as killcount. Because cb_out_count is maximum one less
than cb_out_count, we know they are equal, which can only happen if the
URB is not submitted.

The usb_kbd_malloc and usb_kbd_free’s Contracts take into account all
possible combinations of failed and successful allocation and initialization, which
makes their contracts long, and dependent on other parts of the annotations.

Flow Between Callbacks had to be reasoned about: permissions are passed
between callbacks by setting up callbacks in other callbacks. Reasoning about
flow between multiple callbacks easily gives the impression big parts of the
program must be taken into account at the same time.

2.6.1 Killable asynchrounous resubmittable requests with
completion callback

In this subsection, we describe a more challenging part of the verification in
more detail.

Since both usb_kbd_event and usb_kbd_led submit the LED URB, they need
to be synchronized. This is done by a boolean representing whether the URB is
in progress and a spinlock protecting data including the boolean. usb_kbd_led
will thus need a fraction of the lock handle. As a result, usb_kbd_event will
need to give a fraction of his fraction of the lock handle to the usb_submit_urb
as part of the callback data that the callback (here usb_kbd_event) will receive.
Because the URB is submitted multiple times, the callback data (here fractions
of the lock handle) will be given to the USB API multiple times. They will be

VERIFYING THE USB BP KEYBOARD DRIVER 21

given back when the URB is killed8. If an URB is submitted n times, n times
the callback data will be returned when the URB is killed.

In order to enforce good API usage, the USB API’s specifications ask to prove
that the caller has submitted the URB n times if it wants the callback-data
back n times. To facilitate this, usb_submit_urb returns a predicate that we
call a ticket that indicates the URB is submitted. usb_kill_urb gives n times
the callback predicate if it gets n tickets.

Note that we already introduced two counters: one counter that counts the
number of times an URB is submitted (i.e. the amount of tickets), and one that
counts the number of times a fraction of the lock handle is put in a callback
data predicate. Since these two counters always have the same value, we only
use one ghost counter. We call this counter killcount.

usb_kbd_disconnect must be able to free the LED URB. In order to do this,
the struct containing the URB data must be obtained. This struct is contained
in the lock invariant (i.e. “the data the lock protects”) conditionally: if the
boolean representing whether the URB is in progress is false, the lock contains
the URB struct. Otherwise it does not since it is then owned by the URB API.
Note that usb_kbd_led receives the URB struct such that it can resubmit the
URB, but it can also store it in the spinlock if it does not resubmit.

Since usb_kbd_disconnect must obtain the URB struct, it must thus prove
that the boolean is false. To be able to do this, we introduce a second counter
cb_out_count which represent the number of times usb_kbd_led has returned
without resubmitting the URB. A completion callback has “incoming data”
(originally passed to usb_submit_urb), and “output data” (which will be given
back by usb_kill_urb). If a completion handler does not resubmit, it must
give back the output data in its postcondition. Otherwise, it must give back
the incoming data and the predicate representing the URB struct such that
the URB can be resubmitted by the USB API (note that resubmitting is thus
deferred until the completion handler returns).

The lock invariant contains the claim that cb_out_count equals killcount if
the boolean is false, and cb_out_count is one less than killcount otherwise.

So, usb_kbd_disconnect only needs to prove that the two counters are the
same, such that it can prove the boolean is false and take the URB struct out
of the lock invariant and free it. It is sufficient to prove (i.e. convince VeriFast)
that killcount ≤ cb_out_count.

Since usb_kbd_disconnect kills the LED URB, it gets killcount times the
8This is a simplification. In fact, the cb-out is given back, not the cb-in. This is explained

later on.

22 CASE STUDY: VERIFIED KEYBOARD DRIVER

callback “output data”. We will use a special counter for cb_out_count that
allows us to prove that cb_out_count is a least as big as killcount, provided
that we have killcount times the callback “output data”.

Let us now look at how the cb_out_count counter works. This counter is just
represented by a predicate with the counter value as one of the arguments. By
increasing the counter value, a ticket associated with the counter is returned.
Decreases eats one ticket. Given n tickets, the counter axioms state that the
counter must be at least n high. In order to allow this to work, creating a
counter requires a unique predicate, i.e. a predicate that can only have one
instance for its arguments. Otherwise you could exchange tickets between
counters, which would result in an important unsoundness. Creating a counter
thus requires a predicate and a proof that this predicate is unique; both need
to be passed as argument. Also note that we needs this uniqueness property
to allow sharing counters inside multiple predicates. Otherwise it would be
unknown whether two predicates containing the same counter are referring to
the same counter value.

By putting the tickets of cb_out_count in the callback “output data”, we thus
obtain killcount times this ticket, which allows us to prove that cb_out_count
≥ killcount.

While we were able to perform verification by working out the details of the
above explained idea, we believe it would be nice if a more simple approach
would be applicable.

It is also intresting to see that the part that was the hardest to get verified, was
also the part that contained the bugs that we found in this driver. Originally, the
driver did not perform any real synchronization between usb_kbd_event and
usb_kbd_led, besides checking in a racy way whether the URB is in progress
by reading a field of the URB struct (outside the completion handler), which
is explicitly forbidden by the USB API documentation. The LED URB was
originally also never killed.

2.7 Related work

Here we discuss related case studies and tools in the context of OS verification.
The reader is referred to [34] for a discussion of the related work on VeriFast.

Several automated tools for verifying C programs have been introduced. Notably,
CEGAR-based [13] model checkers such as BLAST [30] and SLAM/SDV [1]
have been applied to check the conformance of device drivers with a set of API
usage rules. In contrast with our work, these tools do not provide support

RELATED WORK 23

for identifying errors with respect to the inherently concurrent execution
environment device drivers are operating in. The tools also assume either
that a program “does not have wild pointers” [1] or, as shown in [45], perform
poorly when checking OS components for memory safety.

In [75] a model checker with support for pointers, bit-vector operations and
concurrency is evaluated on a case study on Linux device drivers. The tool checks
for buffer overflows, pointer safety, division by zero and user-written assertions.
Yet, it requires a test harness with a fixed number of threads to be generated for
each driver. VeriFast, in difference, handles concurrency implicitly and aims at
verifying full functional correctness and implements assume-guarantee reasoning
using generic API contracts. Therefore, VeriFast can check each function of a
driver in isolation, which contributes to the scalability of our approach.

Bounded model checking and symbolic execution have been successfully applied
to the source code [65, 39] and to the object code [46] of kernel modules. In
contrast to the VeriFast approach, these techniques suffer from severe limitations
with respect to reasoning about concurrently executing kernel threads.

Shape analysis has been applied to Windows [2] and Linux [76] drivers, and aims
to automatically infer, e.g. whether a variable points to a cyclic or acyclic list.
Shape analysis can be employed to verify pointer safety, guaranteeing that the
shape of data structures is maintained throughout program execution. Ongoing
work on VeriFast envisages the use of shape analysis to infer annotations [73].

A competing toolkit to VeriFast is the Verifying C Compiler (VCC) [16]. VCC
verifies C programs annotated with contracts. VCC generates Boogie code,
from which the Boogie program verifier generates verification conditions, which
are then discharged by an SMT solver. VCC can be expected to require fewer
annotations than VeriFast, however, at the expense of a less predictable search
times. The toolkit has been employed in a case study on verifying the Microsoft
Hypervisor.

Other approaches to OS verification involve modelling and interactive proof.
Most notably, the L4.verified [29] project aims at producing a verified OS kernel
by establishing refinement relations between several layers of Isabelle/HOL
specifications, a prototypic kernel implementation in Haskell and the actual
kernel implementation in C and assembly. This differs from our work as we do
not employ refinement relations and verification is non-interactive.

24 CASE STUDY: VERIFIED KEYBOARD DRIVER

2.8 Conclusions

We report on the successful verification of usbkbd, the USB Boot Protocol
keyboard driver distributed with the Linux kernel, using the sound and efficient
verification tool VeriFast. The verified properties are crash-freedom, race-
freedom, and a set of API usage rules. The usbkbd driver presents a challenging
case study as it involves concurrency and employs a complex API.

VeriFast requires the source code to be annotated with method contracts that
are typically easy to write. Certain programming constructs that are difficult
to annotate are discussed. During verification, we identified two bugs related to
erroneous synchronization and a missing URB kill. Our case study shows that
VeriFast is a powerful tool. Yet, the annotation overhead amounts to a total of
4.8 lines of annotations per line of code. About half of these annotations specify
API contracts, that can potentially be reused in future case studies.

Verifying functional correctness and unload-safety is left for further work.
Unload-safety includes making sure the kernel does not maintain a function-
pointer to a callback of a module that is already unloaded. It is hard to
tell whether our verification approach will scale for larger device drivers.
More automation for writing or generating annotations with a high degree
of decomposition might help. From our experience we conclude that execution
speed of the verification tool will not impose problems for larger drivers.

List of symbols (I/O)

bio A Basic Input Output (BIO) action Def. 6 p. 31
c ∈ Commands Commands Def. 2 p. 30
C ∈ Chunks Heap chunks Def. 10 p. 37
C ∈ Values→ Commands Def. 3 p. 30
f ∈ FuncNames A program function name Def. 4 p. 31
fc The program function context Def. 5 p. 31
fC The mathematical function used to

look up user-written preconditions and
postconditions.

Def. 30 p. 53

h ∈ Heaps Heaps Def. 11 p. 38
no_io Dummy element in a program trace

representing no I/O happens for this
element

Def. 7 p. 33

no_op No I/O action, used for optional I/O. Sec. 3.6.4 p. 56
P An assertion (also used for set of heaps

before assertions are introduced)
Def. 27 p. 51

Places Places of Petri nets Def. 12 p. 38
PredTx Set of predicate transformers Def. 20 p. 46
Q A function from Values to assertions

(also used for functions from Values
to set of heaps before assertions are
introduced). See also: P .

safe Safe trace Fig. 3.9 p. 47
t See: v

25

26 List of symbols (I/O)

v ∈ Values Def. 2 p. 30
wp Weakest precondition Def. 22 p. 46
τ A program trace Def. 7 p. 33
σ An element in a program trace Def. 7 p. 33
c ⇓ τ , v Program c evaluates to trace τ and

return value v
Fig. 3.1 p. 32

T A Petri net trace Def. 9 p. 36
h] h Heap addition Def. 14 p. 39

h
bio (v , v)
−−−−−−−−−→ h Petri net / heap step performing a BIO Def. 15 p. 39

h
ε−→ h Petri net / heap step performing split,

join, or no_op
Def. 15 p. 39

h ⇓ T Petri net / heap execution Fig. 3.3 p. 40
T ∼ τ Petri net trace simulates program trace Def. 17 p. 40
P � c Program satisfies the specification con-

sisting of a set of Petri nets
Def. 17 p. 40

h
bio (v , v)

=========⇒ h Finite epsilon steps followed by one BIO
step

Def. 19 p. 45

d P e Assertion that “allows” finite epsilon
steps before P

Def. 24 p. 49

d Q e Postcondition that “allows” finite ep-
silon steps before postcondition Q

Def. 25 p. 49

|=
{
P
}
c
{
Q
}

Validity of a Hoare triple Def. 26 p. 50

h � P Assertion P holds for heap h Fig. 3.10 p. 51
`
{
P
}
c
{
Q
}

Provable Hoare triple according to the
proof rules

Fig. 3.12 p. 53

Chapter 3

I/O verification

Publication data

• W. Penninckx, B. Jacobs, and F. Piessens. Sound, modular and
compositional verification of the input/output behavior of programs.
In J. Vitek, editor, Programming Languages and Systems, European
Symposium on Programming (ESOP 2015), London, UK, 14-16 April
2015, pages 158–182. Springer Berlin Heidelberg, Apr. 2015

• W. Penninckx, B. Jacobs, and F. Piessens. Modular, compositional and
sound verification of the input/output behavior of programs. CW Reports
CW663, Department of Computer Science, KU Leuven, May 2014

• W. Penninckx and B. Jacobs. Sound, modular and compositional
verification of the input/output behavior of programs: extended version.
To be submitted

Abstract

We present a program verification approach for programs that perform I/O. The
approach is sound, modular, compositional (I/O actions can be defined on top
of other actions). It uses Petri nets and separation logic. We have implemented
the approach in the VeriFast verifier and sketched how it can be implemented
in the Iris framework.

27

28 I/O VERIFICATION

3.1 Introduction

We present an I/O verification approach as applied to a simple programming
language that can perform I/O and a Hoare logic with proof rules. The
specifications allow to express which I/O the program is allowed to perform
in which order and the proof rules allow to prove that the program does not
violate this. If a proof using these proof rules exists, then we are sure that the
program will never perform undesired I/O and will never perform I/O in an
incorrect order. We do not prove that the program does perform any I/O; such
liveness properties are outside the scope of the thesis. However, if the program
terminates, we do know the program has performed all desired I/O (i.e. the
I/O the program should do according to the specification of the program), and
if the program does not terminate we still know all I/O performed is desired.

The approach supports programs that do not always terminate, since this
is rather common for programs that perform I/O. Indeed, a text editor, a
calculator, or a traffic light: they are not guaranteed to terminate since the user
(or absence thereof) might simply never quit the application.

The approach also supports constraining the output depending on the input.
For example, which digits a calculator is allowed to display (output) depends
on which digits are entered (input).

Furthermore, the approach supports modularity, which means that one can
combine verified pieces of software (e.g. libraries) without having to (re)do work
to use them together. It is not necessary to verify them again.

Besides modularity, the approach also supports compositionality: it is possible
to define I/O actions on top of more primitive I/O actions.

The high-level idea of the approach is as follows. We specify a program’s allowed
behaviors by means of potentially infinite typically non-circular Petri nets whose
transitions are labeled by program actions and environment actions. Specifically,
a program’s specification describes a set of such Petri nets. The specifications are
written using assertions that can contain corecursive predicates to support loops.
A program satisfies such a specification if it simulates each of these Petri nets, in
the sense that for each of the program’s runs, each Petri net has a run where the
program’s actions match or else the environment’s actions do not match. That
is, one can underspecify a program’s behavior by specifying nondeterministic
Petri nets, and one can underspecify the environment’s behavior by specifying
multiple Petri nets with distinct environment actions.

To verify a program, we reason in terms of an instrumented program semantics
where the program state includes a Petri net. In this semantics, an I/O primitive

PROGRAMMING LANGUAGE: SYNTAX 29

goes wrong if the Petri net cannot perform a corresponding transition, and
otherwise updates the Petri net accordingly. This allows us to use a Hoare logic
to prove that the program does not go wrong when executed under an arbitrary
Petri net from the specified set. More specifically, we use a separation logic,
which allows us to reason about the mutation of the Petri net while framing out
and abstracting over parts of it, thus achieving modularity and compositionality.

The remainder of this chapter is organized as follows. We define the syntax
(Sec. 3.2) and semantics (Sec. 3.3) of the programming language. We explain
which role Petri nets play in writing specifications (Sec. 3.4). We define an
instrumented semantics (Sec. 3.5) that links program execution with Petri net
execution. We explain assertions and proof rules (Sec. 3.6). We give some
examples in Sec. 3.7. Finally, we sketch how one can implement the I/O style
verification approach in Iris (Sec. 3.8). Contrary to our approach which is
made specifically for I/O, Iris [38] is a generic framework for reasoning about
concurrent programs that manipulate a shared resource.

We end the chapter with a discussion of related work (Sec. 3.9) and a conclusion
(Sec. 3.10).

3.2 Programming language: syntax

In this section we present the syntax of a simple programming language that
supports I/O, which we use throughout this chapter to present our approach.
Using the syntax of the language as defined in this section, we will define the
semantics of this programming language in Sec. 3.3 on page 32.

The syntax of a command is as follows:

Definition 1: Syntax of Commands, c ∈ Commands

c ::= v | let c in C | f(v) | bio(v)

Any command is a program.

We explain each element of this syntax:

Values v and t range over Values (not variables), which is defined as

30 I/O VERIFICATION

Definition 2: v, t ∈ Values

Values = Z ∪ Z∗ ∪ {true, false,unit,⊥} ∪ Places ∪ FuncNames

but we postpone Places and FuncNames for now (to Def. 4 on the next page
and Def. 12 on page 38). So a value can be an integer, a list of integers, a
boolean, unit, or ⊥.

Executing a command produces a side-effect and a result value. A command
can simply be a value. For example, 42 is a command that has no side-effect
and yields the result value 42.

The programming language does not have operations (+, −, ∗, head, tail, . . .),
but it is possible to use the metalogic1 for operations: 1 + 1 is a way to write
the value 2. Similarly, we use the metalogic for if-then-else. For example:
if 1 > 2 then 7 else 3.

Let

Definition 3: C ∈ Values→ Commands

C ranges over mathematical functions from Values to Commands.

So C in a command of the form let c in C is such a function.

The programming language does not have variables: one just writes

let 1 ∗ 1 in λx. x+ x

where λx. x + x is a lambda expression of the metalogic. We use the more
convenient syntax

let x := 1 ∗ 1 in x+ x

Function application f ranges over function names:
1For a programming language where “1+1” is a valid command in the programming

language, writing “1+1” is ambiguous: it could be a command of the programming language,
or it could be a mathematical addition as we used before studying programming languages.
In the former case we say it is in the logic; in the latter case we say it is in the metalogic. For
our specific programming language under consideration, “1+1” is not ambiguous because it is
always in the metalogic.

PROGRAMMING LANGUAGE: SYNTAX 31

Definition 4: f ∈ FuncNames

We assume a set FuncNames of function names.

We use overline to range over lists, so v ranges over lists of values. A command
f(v) is a function application of function f to arguments v.

We write a value that is a list comma-separated, e.g. 1, 2, 3, 4 is a value that is
a list. For a function name f1 and values v1 and v2, f(v1, v2) is a function call.
f() is a function call where we use the empty list.

Note that f ranges over function names, not function definitions.

Definition 5: fc

We assume a given mathematical function, called fc, from FuncNames to
mathematical functions from Values to Commands.

Since the function context maps a function name to a function, and a function
call just mentions the name of the function and not the definition, we can
create loops by having fc map a function name and arguments to a command
containing a call to that function name. For example, consider infloop as a
function name and a mapping where

fc(infloop) = λx. infloop(x+ 1)

Given this definition, all executions of the command infloop(1) are infinite.

I/O The programming language has explicit syntax for expressing input/out-
put.

Definition 6: BIOs

We assume a set of Basic Input/Output (BIO) actions, and range over it
with bio.

The command bio(v) performs the BIO action bio with argument v, e.g. the
program putchar(3) outputs the number three on the screen if putchar is
considered a BIO. Remember that programs return values, e.g. the program 4
returns the value 4. A program consisting of a BIO call is considered to return
the input value, e.g. the program getchar(unit) returns the value read from

32 I/O VERIFICATION

Val
v ⇓ 〈〉, v

c ⇓ τ1, v1 C(v1) ⇓ τ2, v2
Let

let c in C ⇓ τ1 · τ2, v2

(fc(f))(v1) ⇓ τ, v2
App

f(v1) ⇓ no_io · τ, v2

Bio
bio(v) ⇓ 〈bio(v, vr)〉, vr

Figure 3.1: Step semantics

the keyboard if getchar is considered a BIO. All BIO actions are considered
to be both input and output: a pure output action can be modelled as a BIO
action that returns unit. If the output value (i.e. the value “given to the outside
world”) is irrelevant we sometimes omit it, e.g. we write getchar() instead of
getchar(unit).

When applying our approach, BIOs can be used to model calls to a complex
graphics or sound library, calls to the C standard library, system calls (calls to
the operating system’s kernel, implemented as software interrupts), or they could
be calls to functions implemented to perform specific I/O CPU instructions
or perform memory-mapped I/O. For simplicity of our formalization, BIOs
are the lowest-level input/output action under consideration, but it could be a
high-level action (to e.g. a library) or a low-level action (e.g. a system call) in
practice. Because the programming language supports functions, it is possible
to write programs on top of higher-level input-output actions, where these
actions are implemented as functions that call BIOs or call other higher-level
input-output actions.

3.3 Programming language: semantics

In this section we define the semantics of the programming language.

Because we are interested in input/output and we want to support nonterminat-
ing programs, we need a way to reason about the input/output performed by
nonterminating programs. We do this by defining program traces as potentially
infinite lists of actions.

More formally:

PROGRAMMING LANGUAGE: SEMANTICS 33

Definition 7: Program traces (τ)

We define program traces coinductively as follows:

σ ::= no_io | bio(v, v)
τ ::= 〈〉 | σ · τ

We usually abbreviate “program trace” to “trace”.

A trace is a sequence of input-output actions. For example, the trace
bio1(v1, v2) · bio2(v2, v3) · 〈〉 expresses that first the action bio1 happens with
argument v1 and return value v2. v1 is output (from the point of view of the
program), and v2 is input. In other words, v1 is information that flows from
the program to the world, and v2 flows from the world to the program. After
that, bio2 happens with argument v2 and result value v3.

It will later be useful that traces of nonterminating programs are infinite,
even if they do not perform any I/O. This is what no_io is used for: with a
nonterminating program that does not perform I/O we associate the infinite
trace no_io · no_io · no_io · . . ., and not the finite trace 〈〉.

We write a finite trace like bio1(v1, v2) · bio2(v3, v4) · 〈〉 also as 〈bio1(v1, v2),
bio2(v3, v4)〉.

Definition 8: Step semantics (c ⇓ τ, v)

Fig. 3.1 on the preceding page defines the step semantics of the
programming language coinductively.

This is a coinductive big-step semantics similar2 to [47]. c ⇓ τ, v expresses that
executing the program c can result in a (possibly infinite) trace of I/O actions
τ where it (if it terminates) returns value v.

Bio Consider the BIO rule. An example instance of this rule is putchar(1) ⇓
〈putchar(1, 0)〉, 0. This expresses that the program putchar(1) has an execution
where the I/O actions are described by the trace 〈putchar(1, 0)〉, and where the
program returns 0.

2We use I/O actions as items in the trace, instead of program state consisting of a mapping
of variables to values.

34 I/O VERIFICATION

Nondeterminism and input Note that c ⇓ τ1, v1∧c ⇓ τ2, v2 does not imply that
τ1 = τ2 nor that v1 = v2. For example, for the program read(0), both read(0) ⇓
〈read(0, 7)〉, 7 and read(0) ⇓ 〈read(0, 8)〉, 8 hold. In the former execution, the
command reads the value 7, and in the latter it reads the value 8. In other
words, we consider BIO actions to be nondeterministic because a program that
reads input can read different values on different runs and therefore multiple
executions are possible for the same program.

Function call The App step rule describes how function calls are executed.
Note that this step rule adds no_io to the trace. If the function call creates an
infinite loop, the trace will therefore be infinite. This gives us the property that
we always associate an infinite trace to a nonterminating program execution,
even if the execution does not perform an infinite number of input/output
actions.

Let Consider the Let step rule. It uses trace concatenation, written with the
infix symbol ·, which is defined corecursively as follows: (σ · τ1) · τ2 = σ · (τ1 · τ2)
and 〈〉 · τ = τ .

Consider the program let c in C, an execution c ⇓ τ1, v1 of c, and an execution
C(v1) ⇓ τ2, v2 of C(v1). The Let rule states that let c in C has an execution
let c in C ⇓ τ1 ·τ2, v2. Note that in case τ1 is infinite, i.e. the execution of c that
is under consideration does not terminate, then τ1 · τ2 = τ1. So in that case τ2
is ignored. In case τ1 is finite, i.e. the execution of c that is under consideration
terminates, then τ2 is not ignored.

3.4 Specifications: Petri nets

In this section we study our flavor of Petri nets (Sec. 3.4.1), the heap
representation of Petri nets and Petri net execution (Sec. 3.4.2), and the relation
between program execution and Petri net execution (Sec. 3.4.3).

This prepares us for verifying modularly and compositionally that a program
satisfies a specification given by a set of Petri nets (Sec. 3.5), proof rules, and
assertions that describe sets of Petri nets (Sec. 3.6).

3.4.1 Petri nets

The kind of Petri nets we use in this thesis consists of

SPECIFICATIONS: PETRI NETS 35

T1

split

Ta1

on(1)

Ta2

off(1)

Ta3

Tb1

on(2)

Tb2

off(2)

Tb3

join

T2

(a)

Ta1

on(1)

Ta2

off(1)

Ta3

Tb1

on(2)

Tb2

off(2)

Tb3

join

T2

(b)

Ta1

on(1)

Ta2

off(1)

Ta3

Tb2

off(2)

Tb3

join

T2

(c)

Figure 3.2: Example Petri net with two executions steps

• a set of places. Places are visualized as circles.

• a marking: a function from places to natural numbers. Markings are
visualized as a number of dots (called tokens) in the circles that represent
places.

• a set of transitions (does not overlap with the set of places). Transitions
are visualized as bars.

• a set of arrows. An arrow goes from a place to a transition, or from a
transition to a place.

A Petri net can be executed by performing a number of execution steps. An
execution step manipulates the marking (although it is possible the resulting
marking equals the starting one). Deviating from the standard definition of Petri
nets, an execution step also removes one transition. To perform an execution
step, select a transition for which all incoming arrows start from a place with
at least one token. The resulting marking is the original one with one token
removed from every place that has an outgoing arrow to the transition, and
one token added to every place that has an incoming arrow from the transition.
The selected transition is removed.

36 I/O VERIFICATION

Since sometimes there are multiple transitions to choose from to perform an
execution step, there can be multiple possible executions for a given Petri net.
Execution is nondeterministic.

Fig. 3.2 on the preceding page shows an example sequence of three Petri nets,
where successive Petri nets are related by an execution step.

The Petri nets we use in our approach have four kinds of transitions:

• BIO transitions are labelled by a BIO action and have one incoming and
one outgoing arrow;

• split transitions have one incoming and two outgoing arrows;

• join transitions have two incoming arrows and one outgoing arrow; and

• no_op transitions are labelled with no_op and have one incoming and
one outcoming arrow. They are dummy transitions that represent not
performing any I/O. We will explain the use of no_op transitions later
(Sec. 3.6.4).

An execution of a Petri net yields a (potentially infinite) Petri net trace of the
transitions used in the steps of the execution.

Definition 9: Petri net trace (T)

We define Petri net traces coinductively as follows:

T ::= 〈〉 | ε · T | bio(vo, vi) · T

We define the trace of an execution of a Petri net as follows. We record every
transition in the trace in the order in which the transitions were selected in the
execution. For a transition that is a split, a join or a no_op, we write ε in the
trace, and for an I/O action we write the BIO, input, and output value of the
I/O action. For simplicity, we combine one program action (i.e. output action)
and one environment action (input action) into one BIO action that does both
input and output. In case the input value (or sometimes the output value) does
not matter, we do not write it down.

Here are the traces of some of the executions of the Petri net of Fig. 3.2a on
the previous page:

• 〈ε, on(1), off(1), on(2), off(2), ε〉

SPECIFICATIONS: PETRI NETS 37

• 〈ε, on(1), on(2), off(2), off(1), ε〉

• 〈ε, on(2), off(2), on(1), off(1), ε〉

Here are traces for which no execution of the Petri net of Fig. 3.2a on page 35
yield the trace:

• 〈ε, off(1), on(2), off(2), ε〉 (cannot occur)

• 〈ε, on(1), off(2), on(2), off(1), ε〉 (cannot occur)

• 〈ε, on(1), on(2), on(1), off(2), off(1), ε〉 (cannot occur)

3.4.2 Petri nets as heaps

In this subsection we study how we represent a Petri net as a heap instead of
as a drawing. Here, we do not use classic heaps that are (partial) function from
memory addresses to values. Instead, we use heaps that are multisets of heap
chunks.

In this subsection we also use the heap representation of a Petri net to formally
define execution of a Petri net. The heap representation also serves as a first
step towards defining an instrumented semantics (Sec. 3.5) where the program
state includes a Petri net, and towards writing assertions (Sec. 3.6) that describe
sets of Petri nets.

Definition 10: C ∈ Chunks

We define the set Chunks of chunks, ranged over by C:

C ::= bio(t, v, v, t) | no_op(t, t) | split(t, t, t) | join(t, t, t) | token(t)

Remember both v and t range over Values.

A chunk bio(t1, vi, vo, t2) represents the BIO transition for BIO bio with input
value vi and output value vo and the arrow from place t1 to that transition and
the arrow from that transition to place t2.

A chunk split(t1, t2, t3) represents a split transition and an arrow from place t1
to that transition, an arrow from that transition to t2 and an arrow from that
transition to the place t3.

38 I/O VERIFICATION

A chunk join(t1, t2, t3) represents a join transition and an arrow from place t1
to that transition, an arrow from the place t2 to that transition, and an arrow
from that transition to the place t3.

A chunk no_op(t1, t2) represents a no_op transition and an arrow from the
place t1 to that transition, and an arrow from the transition to the place t2.

A chunk token(t) expresses the Petri net marking has at least one token (i.e. in
the visual representation the place has at least one dot). The number of tokens
(or dots) in the place t in the Petri net depends on the number of token(t)
chunks.

We call a potentially infinite multiset of chunks a heap. We range over heaps
with h:

Definition 11: h ∈ Heaps

Heaps = Chunks→ N ∪ {∞}

Definition 12: Places

We assume an infinite set Places. We assume it contains the elements
T1,T2,T3, . . .Ta1,Ta2,Ta3, . . .Tb1,Tb2,Tb3, . . . ,Tz1,Tz2,Tz3, . . .

So we can say T3 ∈ Places.

In this thesis, we only consider Petri nets where its set of places is a subset of
Places. When defining Values earlier (Def. 2 on page 30), it was defined such
that Values is a superset of Places.

Consider the following heap:

{[token(T1), split(T1,Ta1,Tb1), on(Ta1, 1,Ta2), off(Ta2, 1,Ta3),
on(Tb1, 2,Tb2), off(Tb2, 2,Tb3), join(Ta3,Tb3,T2)]}.

The Petri net representation of this heap is the leftmost Petri net in Fig. 3.2 on
page 35.

We do not write the input or output argument of BIOs when it is not interesting,
so on(Ta1, 1,Ta2) stands for on(Ta1, 1,unit,Ta2) and getchar(Ta1, 27,Ta2)
stands for getchar(Ta1,unit, 27,Ta2).

SPECIFICATIONS: PETRI NETS 39

Definition 13: Addition on N ∪ {∞}

We define addition on N ∪ {∞}, written with infix operator +, as follows
(+N is addition of natural numbers):

∞ + ∞ =∞
∞ + n =∞
n + ∞ =∞
n1 + n2 = n1 +N n2

We define addition of heaps, written with infix operation], as follows:

Definition 14: Addition of heaps (h] h)

h1] h2 = (λC. h1(C) + h2(C))

Now that we have heaps, we define execution of Petri nets again, but this time
in terms of heaps.

We define a relation between heaps: h1
bio(vo,vi)−−−−−−→ h2 expresses that the heap

h1 allows to perform the BIO action bio with argument vo. Furthermore,
performing such action will return value vi and the resulting (state of the) Petri
net is expressed by h2.

Definition 15: Petri net step (h bio(v,v)−−−−−→ h and h
ε−→ h)

{[token(t1), bio(t1, vo, vi, t2)]}] h bio(vo,vi)−−−−−−→ {[token(t2)]}] h

{[token(t1), split(t1, t2, t3)]}] h ε−→ {[token(t2), token(t3)]}] h

{[token(t1), token(t2), join(t1, t2, t3)]}] h ε−→ {[token(t3)]}] h

{[token(t1),no_op(t1, t2)]}] h ε−→ {[token(t2)]}] h

h1
ε−→ h2 expresses one step of the Petri net h1 that does not perform I/O. This

is used for split, join, and no_op transitions.

40 I/O VERIFICATION

Stop
h ⇓ 〈〉

h
ε−→ h′ h′ ⇓ T

Epsilon
h ⇓ ε · T

h
bio(vo,vi)−−−−−−→ h′ h′ ⇓ T

Bio
h ⇓ bio(vo, vi) · T

Figure 3.3: Execution of a Petri net / heap

Definition 16: Petri net execution (h ⇓ T)

Executing a Petri net is defined coinductively in Fig. 3.3.

3.4.3 Programs and Petri nets

On the one hand we have defined a programming language, and how an execution
of a program can perform I/O (Sec. 3.3). Executing the program yields a
program trace of I/O actions. On the other hand we have defined Petri nets
and how they are executed (Sec. 3.4.1 and Sec. 3.4.2). Executing a Petri net
yields a Petri net trace.

In this subsection we study the relation between program execution and Petri
net execution, and how we use a set of Petri nets as the specification of the
allowed I/O 3. The latter prepares us for writing assertions that describe sets
of Petri nets (Sec. 3.6.1).

A program c satisfies the specification P consisting of a set of Petri nets, denoted
P � c, if for every execution of the program, and for every Petri net in that set
of Petri nets, there exists an execution in the Petri net such that the trace of the
execution of the Petri net simulates the trace of the execution of the program.

More formally:

Definition 17: Petri net trace simulates program trace (T ∼ τ)

When a Petri net trace simulates a program trace, written T ∼ τ , is
defined coinductively in Fig. 3.4 on the facing page.

The Contra rule of Fig. 3.4 on the next page will be explained later (p. 44).
3For now we ignore specifying which I/O must have been performed if the program

terminates.

SPECIFICATIONS: PETRI NETS 41

T ∼ τ
NoIO

T ∼ no_io · τ
T ∼ τ

Bio
ε∗ · bio(vo, vi) · T ∼ bio(vo, vi) · τ

vi 6= v′i
Contra

ε∗ · bio(vo, v′i) · T ∼ bio(vo, vi) · τ
Empty

T ∼ 〈〉

Figure 3.4: Relation between Petri net traces and program traces. ε∗ ranges
over finite Petri net traces that only consist of epsilons, e.g. 〈ε, ε, ε〉 and 〈〉.

T1

putchar(‘h’)

T2

putchar(‘i’)

T3

Figure 3.5: One Petri net that only has one execution

Definition 18: P � c

For a set of heaps P (we write P (h) to say h is in P) and a program c,
we define whether c satisfies the specification P , written P � c, as follows:

P � c ⇐⇒ ∀h, τ, v. P (h) ∧ c ⇓ τ, v ⇒ ∃T. h ⇓ T ∧ T ∼ τ

We now illustrate this specification formalism by means of examples.

Simple Petri net We start with the simple situation where the set of Petri
nets only contains one Petri net, input is not considered (only output), the
Petri net only has one possible run, and the program is deterministic (only has
one execution). Consider for example the set of Petri nets that only consists of
the Petri net of Fig. 3.5 and the program (call it c1)

putchar(‘h’); putchar(‘i’)

The Petri net has only one trace, namely T1 = 〈putchar(‘h’), putchar(‘i’)〉
and the program has only one execution, namely c1 ⇓ τ1,unit where τ1 =
〈putchar(‘h’), putchar(‘i’)〉.

42 I/O VERIFICATION

T1

putchar(‘k’)

putchar(‘K’)
T2

Figure 3.6: One Petri net with two executions

Looking at Fig. 3.4 on the previous page it is easy to see that T1 ∼ τ1. Therefore,
the program satisfies its specification, i.e. {{[token(T1), putchar(T1, ‘h’,T2), putchar(T2, ‘i’,T3)]}} �
c1.

The following program does not satisfy the same specification:

putchar(‘h’); putchar(‘w’)

Underspecification of the program Now we consider Petri nets that have
multiple executions, such as the one in Fig. 3.6. It has the following traces:

• T2 = 〈putchar(‘k’)〉

• T3 = 〈putchar(‘K’)〉

For a program to satisfy the specification consisting of only the one Petri net
of Fig. 3.6, the traces of the program’s executions only need to simulate one
of the traces of the Petri net. Therefore, the following programs satisfy the
specification:

putchar(‘k’)
putchar(‘K’)

The implementation does not have to choose statically which Petri net trace
to simulate. If the programming language had a random number generator
(that does not perform I/O), then the following program would also satisfy the
specification:

let x := rand in if x > 0 then putchar(‘K’) else putchar(‘k’)

The following programs do not respect the specification:

putchar(‘k’); putchar(‘K’)

SPECIFICATIONS: PETRI NETS 43

T1

getchar(0)

T2

putchar(0)

T3

T1

getchar(1)

T2

putchar(2)

T3

T1

getchar(2)

T2

putchar(4)

T3

T1

getchar(3)

T2

putchar(6)

T3

Figure 3.7: Set of Petri nets

putchar(‘l’)

whisper(‘k’)

Summarizing, Petri nets with multiple traces are useful to underspecify the
program. This can be useful: For example, there might be two “OK” messages
in a protocol because of historical reasons, and either can be sent as a reply.
The person implementing the function that has this specification, can choose
which one to actually send.

Split/join The Petri net of Fig. 3.2 on page 35 contains a split and a join.
This way, it also has multiple traces. The program can then choose which
one to follow. Split and join allow one to more easily specify interleavings of
I/O actions. While for this simple example it is possible to just let the Petri
net contain all the possible interleavings instead of using split and join, this
way of avoiding split and join won’t be possible anymore once we introduce
compositionality (Sec. 3.6.3).

Input, underspecifying the environment, and multiple Petri nets A Petri net
can have multiple executions (and therefore multiple traces) and we explained
this is used for nondeterminism of the program. For nondeterminism of the
environment, we use a set of Petri nets as specification instead of only one Petri
net. This also allows to constrain the environment by leaving Petri nets out of
the set.

Consider the example of Fig. 3.7. This is a set of four Petri nets. Informally,
this specification expresses that the environment will input 0, 1, 2, or 3 and
that the program will respond by twice outputting the received value.

44 I/O VERIFICATION

For a program to satisfy this specification, for every Petri net of the set and for
every execution of the program, the program trace of the program execution
must simulate at least one Petri net trace of the Petri net. The reason this
must be true for every Petri net (and not just for one) is because the program
must behave well for every possible behavior of the world.

Consider the following program which we will call c2:

let x := getchar() in
putchar(x× 2)

This program has infinitely many executions, including the following three:

• c2 ⇓ 〈getchar(0), putchar(0)〉,unit

• c2 ⇓ 〈getchar(1), putchar(2)〉,unit

• c2 ⇓ 〈getchar(2), putchar(4)〉,unit

It is reasonable that every execution “must behave properly” and not perform
disallowed I/O. Consider the first execution: c2 ⇓ 〈getchar(0), putchar(0)〉,unit.
It is clear that the trace of this execution simulates a trace of the leftmost Petri
net of Fig. 3.7 on the preceding page since it is the same trace. We said earlier
that the program execution must simulate a trace of every Petri net in the set,
because the program must behave correctly for every behavior/choice of the
environment. So it must also simulate a trace of the second Petri net. This
is the case: according to the Contra rule of Fig. 3.4 on page 41, if a Petri net
trace and a program trace agree up to an I/O action where they disagree on
the input value of a BIO (but they agree on the output value and on the BIO
itself), then the one trace simulates the other, regardless of the remainders of
the traces. In other words: as soon as the environment violates the specification
when executing the program, the program is allowed to perform any I/O.

Note that by using a set of Petri nets as a specification (contrary to using
one Petri net as a specification) we do not only support underspecification of
the environment (i.e. input), but also specifying I/O behavior that is different
depending on the environment’s behavior.

3.5 Instrumented semantics

To verify a program, we reason in terms of an instrumented program semantics
(which we define in this section) where the program state includes a Petri net.

INSTRUMENTED SEMANTICS 45

h1
ε−→ h2 h2

ε−→
∗
h3

h1
ε−→
∗
h3

h
ε−→
∗
h

Figure 3.8: Definition of h1
ε−→
∗
h2: it expresses that there is a finite number of

epsilon steps from h1 to h2. (used in Def. 19)

In this semantics, an I/O primitive goes wrong if the Petri net cannot perform
a corresponding transition, and otherwise updates the Petri net accordingly.
This allows us to use a Hoare logic (Sec. 3.6) to prove that the program does
not go wrong when executed under an arbitrary Petri net from the specified set.
More specifically, we use a separation logic, which allows us to reason about
the mutation of the Petri net while framing out and abstracting over parts of it,
thus achieving modularity and compositionality.

Contrast to our definition of correctness in the previous subsection, correctness of
a command is defined compositionally in terms of correctness of its subcommands.
This allows verifying modularly and compositionally that a program satisfies a
specification given by a set of Petri nets.

Specifically, in this section, we define an instrumented semantics in the form of
a predicate transformer semantics that maps a command and a postcondition to
the weakest precondition, similar to Dijkstra’s weakest precondition semantics
[18]. In the next section (Sec. 3.6) we use this semantics to define a Hoare logic.
Before defining this semantics, we define some helper definitions.

We write h1
bio(vo,vi)======⇒ h2 to express that the heap h1 can perform a finite

number of epsilon steps (splits, joins, no_ops), followed by the BIO step. By
doing so, the heap h2 is obtained. More formally:

Definition 19: h bio(v,v)=====⇒ h

h1
bio(vo,vi)======⇒ h2 = ∃h′. h1

ε−→
∗
h′ ∧ h′ bio(vo,vi)−−−−−−→ h2

This definition uses Fig. 3.8.

We define predicate transformers as the functions that map a command and a
postcondition on a precondition. More formally:

46 I/O VERIFICATION

Definition 20: Predicate transformer (PredTx)

PredTx = Cmds→ (Values→ P(Heaps))→ P(Heaps)

Here, Cmds is the set of all syntactically valid commands.

A predicate transformer ptx is monotone if it allows weakening the postcondition.
Formally:

Definition 21: Monotone predicate transformer

A predicate transformer ptx is monotone iff

∀Q,Q′ ∈ (Values→ P(Heaps)), c ∈ Commands.(
∀v, h. Q(v)(h)⇒ Q′(v)(h)

)
⇒
(
∀h. ptx(c,Q)(h)⇒ ptx(c,Q′)(h)

)
Here, ⇒ is implication. We write Q(v)(h) to express h is a heap in the set of
heaps Q(v).

Definition 22: wp

We define wp as the weakest monotone predicate transformer that satisfies
the following equations4.

• wp(let c in C, Q) = wp(c, λv.wp(C(v), Q))

• wp(f(v), Q) = wp(fc(f)(v), Q)

• wp(bio(vo), Q) = λh.∃vi, h′. h
bio(vo,vi)======⇒ h′ ∧Q(vi)(h′)

• wp(v,Q) = Q(v)

wp maps a command and a postcondition to a precondition. One can think of
the precondition as a set of heaps, i.e. a set of Petri nets or an I/O specification,
and the postcondition as a function that maps a value to a set of heaps.

For a command that is a BIO and a postcondition, wp returns the heaps h for
which it is possible to perform the BIO to reach a heap h′ in the postcondition.
Some examples:

4A unique weakest solution exists; see Appendix A.1.

INSTRUMENTED SEMANTICS 47

h1
bio(vo,vi)======⇒ h2 safe(h2, τ, P)

SafeBio
safe(h1, bio(vo, vi) · τ, P)

h1
bio(vo,v

′
i)======⇒ h2 vi 6= v′i

SafeContradict
safe(h1, bio(vo, vi) · τ, P)

safe(h, τ, P)
SafeNoIO

safe(h,no_io · τ, P)

dP e(h)
SafePost

safe(h, 〈〉, P)

Figure 3.9: Definition of a safe trace for a start heap and a postcondition.

• wp(getchar(unit), λv. {{[token(T2)]}}) ⊇ {{[token(T1), getchar(T1,unit, 2,T2)]}}

• wp(getchar(unit), Q) ⊇ P where
Q = λv. {h | ∃hr. h = hr] {[token(T2)]}}
P = {{[token(T1), getchar(T1,unit, 2,T2)]}}
Note that the postcondition allows leaking: while the postcondition con-
strains the heap to contain the heap chunk token(T2), the postcondition
allows the heap to contain other heap chunks as well.

• wp(c, λv. {{[token(T3)]}}) ⊇ P where
P = {h | ∃i. h = {[token(T1), getchar(T1, i,T2), putchar(T2, i ∗ 2,T3)]}}
c = let x := getchar() in putchar(x ∗ 2)
Note that P includes the Petri nets of Fig. 3.7 p. 43.

Note that the weakest precondition semantics does not only define whether a
command satisfies a specification, but also defines the semantics of commands.

3.5.1 Soundness

We show that the new compositional definition of correctness implies the old
non-compositional one. In other words, we show that if a program c satisfies a
specification P according to the weakest precondition semantics, then it also
satisfies this specification according to the previous non-modular semantics:

48 I/O VERIFICATION

P ⊆ wp(c,Q)⇒ P � c

One can easily prove that P � c allows strengthening the precondition, i.e.
P ⊆ P ′ ∧ P ′ � c⇒ P � c. Therefore, it suffices to prove that

wp(c,Q) � c

By definition it is equivalent to show that:

∀h, τ, v. wp(c,Q)(h) ∧ c ⇓ τ, v ⇒ ∃T. h ⇓ T ∧ T ∼ τ

In other words, if a heap is in the weakest precondition of the program for
some postcondition, then every (potentially infinite) program trace obtained by
executing the program is simulated by a Petri net trace obtained by executing
the Petri net.

Instead of proving this soundness statement, we will prove a stronger soundness
statement. We formulate the stronger soundness statement in two steps.

As the first step, we make the soundness statement stronger by also constraining
the postcondition. Note that the conclusion (∃T. h ⇓ T ∧ T ∼ τ) does not
constrain the postcondition. To additionally constrain the postcondition, we
instead show that:

∀h, τ, v. wp(c,Q)(h) ∧ c ⇓ τ, v ⇒ safe(h, τ,Q(v))

Definition 23: safe

safe is defined coinductively in Fig. 3.9 on the previous page.

Informally, safe(h, τ, P) expresses that a run of a program that yields the trace
τ satisfies the following properties:

• The trace τ is simulated by a trace T that “starts” from h. As a result,
the trace τ is only allowed to perform I/O actions that are allowed by the
start heap h.

• If the program trace τ is finite, and the world did not violate promises
expressed in h, then the postcondition P must be met for the heap
obtained by performing the steps of T on h. Remember that only finite
executions of programs yield finite program traces.

INSTRUMENTED SEMANTICS 49

The start heap h that expresses the permissions of allowed I/O, can contain
promises about the world, and the world can violate these promises.

For example, we have

safe({[token(t1), getchar(t1, 0, 3, t2)]}, 〈getchar(0, 4),putchar(7, 0)〉, P)

The heap {[token(t1), getchar(t1, 0, 3, t2)]} promises that the world will produce
3 when reading. In the trace the world returns 4, violating this promise. The
program only has to behave correctly as long as the world does not violate such
promises, hence it can perform the putchar action even though it did not have
permission to do so.

We show that the soundness statement is made stronger and not weaker:

Theorem 1

∀h, τ, P. safe(h, τ, P)⇒ ∃T. h ⇓ T ∧ T ∼ τ

Proof. Full proof on p. 169.

The second step in making the soundness statement stronger will be useful for
a later theorem (Theorem 4 on page 59). This second step needs the following
definitions.

Definition 24: dP e

For a precondition P , we define dP e as

dP e = λh.∃h′. h ε−→
∗
h′ ∧ P (h′)

Intuitively, dP e is the set of heaps that can “reach” a heap in P by performing
a finite number of epsilon steps.

Definition 25: dQe

For a postcondition Q, we define dQe as:

dQe = λv. dQ(v)e

As the second step in making the soundness statement stronger we write the
soundness statement as follows (note that wp(c,Q)(h)⇒ dwp(c, dQe)e(h)):

50 I/O VERIFICATION

Theorem 2

∀c,Q, h, v, τ. c ⇓ τ, v ∧ dwp(c, dQe)e(h)⇒ safe(h, τ,Q(v))

Proof. Proof by induction nested inside coinduction. (Full proof on p. 170)

3.6 Program logic: assertions and proof rules

In the previous section we studied when a program satisfies its specifications
thanks to the instrumented semantics. In this section we define proof rules for
this based on Hoare logic and assertions that describe sets of heaps.

3.6.1 Hoare triples and assertions

A Hoare triple consists of a precondition P , a program c and a postcondition Q
and is written

{
P
}
c
{
Q
}
. P is an assertion. In the setting of this section, Q is

a function from values to assertions such that Q can constrain the return value
of the program.

We say a Hoare triple
{
P
}
c
{
Q
}
is valid if for every heap (or Petri net) h

that satisfies the precondition P and for every execution of c, the trace τ of
this execution is simulated by a trace T of the Petri net. Furthermore, if the
program terminates, then the postcondition Q is satisfied by the return value of
the execution and the Petri net obtained by performing the steps of the trace T
on h. More precisely (h � P means h satisfies the assertion P):

Definition 26: Validity of a Hoare triple (|=
{
P
}
c
{
Q
}
)

∀P, c,Q. |=
{
P
}
c
{
Q
}
⇐⇒

∀h, v, τ. h � P ∧ c ⇓ τ, v ⇒ safe(h, τ, (λv, h. h � Q(v)))

For a Hoare triple
{
P
}
c
{
Q
}
, the precondition P is an assertion, and the

postcondition Q is a function from values to assertions (this allows the
postcondition to constrain the return value).

Assertions are defined syntactically as follows:

PROGRAM LOGIC: ASSERTIONS AND PROOF RULES 51

h � true h] {[C]} � C
h1 � P1 h2 � P2

h1] h2 � P1 ∗ P2

h � (predmap(p))(v)

h � p(v)

∃v ∈ Values. h � P(v)

h � ∃P

h � P

h � P ∨ P ′

h � P ′

h � P ∨ P ′

Figure 3.10: Satisfaction relation of assertions

Definition 27: Assertions (P)

P ::= v | P ∗ P | C | p(v) | P ∨ P | ∃P

Definition 28: Assertion holds for a heap (h � P)

Fig. 3.10 defines coinductively for which heaps an assertion holds.

In Fig. 3.10, P ranges over functions from values to assertions. One can ignore
p for now; it ranges over copredicate names and will be explained on p. 55.
Notice that assertion satisfaction is preserved by adding chunks: we can prove
by coinduction that h � P ⇒ h] h′ � P .

Here is an example Hoare triple:

 token(T1) ∗
putchar(T1, ‘h’,T2) ∗
putchar(T2, ‘i’,T3)

putchar(‘h’);
putchar(‘i’){
λ_. token(T3)

}

52 I/O VERIFICATION

∀h. h � P1 ⇒ h � P2

P1 V P2

token(t1) ∗ split(t1, t2, t3)V token(t2) ∗ token(t3)

token(t1) ∗ token(t2) ∗ join(t1, t2, t3)V token(t3)

token(t1) ∗ no_op(t1, t2)V token(t2)
P V P ′

P ∗RV P ′ ∗R

Figure 3.11: Rewrite rules

We write c; c′ to abbreviate let c in λ_. c′. In this example Hoare triple, the
precondition describes exactly one Petri net, namely the one of Fig. 3.5 on
page 41.

The precondition of our example states that the program is allowed to write ‘h’,
followed by writing ‘i’. It does not allow the program to perform any other I/O
action, or perform the allowed actions in any other order.

The postcondition of our example also describes a Petri net consisting of only
one place with one token. If the Hoare triple is true, then the we know the
program, if it terminates, will have “obtained” the token, which it can only
do by performing the action of writing ‘h’ and writing ‘i’. In other words, the
postcondition describes that if the program terminates, it will have written ‘h’
followed by ‘i’ and not have done any other I/O.

Definition 29: Proof rules (`
{
P
}
c
{
Q
}
)

Fig. 3.12 on the facing page lists the proof rules.

The Rewrite rule of Fig. 3.12 on the next page uses the rules of Fig. 3.11. The
App rule of the proof rules (i.e. of Fig. 3.12) uses fC:

PROGRAM LOGIC: ASSERTIONS AND PROOF RULES 53

Val
`
{

true
}
v
{
λv′. v′ = v

}
`
{
P
}
c
{
Q1
}

∀v. `
{
Q1(v)

}
C(v)

{
Q
}

Let
`
{
P
}
let c in C

{
Q
} (P,Q) ∈ fC(f)(v)

App
`
{
P
}
f(v)

{
Q
}

`
{
P
}
c
{
Q
}

Frame
`
{
P ∗R

}
c
{
λv.Q(v) ∗R

} `
{
P1
}
c
{
Q
}

`
{
P2
}
c
{
Q
}

Disj
`
{
P1 ∨ P2

}
c
{
Q
}

Bio
`
{
token(t1) ∗ bio(t1, vo, vr, t2)

}
bio(vo)

{
λv. v = vr ∗ token(t2)

}
P V P ′ `

{
P ′
}
c
{
Q
}

∀v. Q(v)V Q′(v)
Rewrite

`
{
P
}
c
{
Q′
}

∀v. `
{
P(v)

}
c
{
Q
}

Exists
`
{
∃P
}
c
{
Q
}

Figure 3.12: Proof rules

Definition 30: fC

We assume a function fC that maps program function names to
mathematical functions that map a list of values (i.e. the arguments)
to a set of pairs of a precondition and a postcondition.

We can prove the example Hoare triple straightforwardly using these rules.

3.6.2 Hoare triples with multiple starting Petri nets

As explained in Sec. 3.4.3, a specification consists of a set of Petri nets, but in
the examples so far we only wrote assertions that describe one Petri net.

54 I/O VERIFICATION

One way to deal with this is to write assertions that describe sets that contain
more than one Petri net. You can easily do this, e.g. write as precondition
token(T1) ∗ ∃v. getchar(T1, v,T2).

This has the disadvantage that the postcondition cannot access v. We solve
this by using quantification at the level of the Hoare triple, like so:

∀v, t1, t2, t3. token(t1) ∗
getchar(t1, v, t2) ∗
putchar(t2, v + 1, t3)

let x := getchar() in
putchar(x+ 1);
x{

λres. token(t3) ∗ res = v
}

This expresses that for any v, t1, t2, t3 a Hoare triple holds. So for v = 7, t1 = T1
and t2 = T2 the following Hoare triple holds: token(T1) ∗

getchar(T1, 7,T2) ∗
putchar(T2, 8,T3)

let x := getchar() in
putchar(x+ 1);
x{

λres. token(T3 ∗ res = 7)
}

We will not write the quantification (such as ∀v) explicitly for Hoare triples
anymore: when writing a Hoare triple `

{
P
}
c
{
Q
}
with free variables x, we

mean ∀x. `
{
P
}
c
{
Q
}
.

Here is a more interesting example:

token(t1) ∗
getchar(t1, v, t2) ∗
if v < 10 then

putchar(t2, ‘l’, t3) ∗
putchar(t3, ‘o’, t4)

else
putchar(t2, ‘h’, t3) ∗
putchar(t3, ‘i’, t4)

PROGRAM LOGIC: ASSERTIONS AND PROOF RULES 55

T1

getchar(11)

T2

putchar(‘h’)

T3

getchar(‘i’)

T4

T1

getchar(7)

T2

putchar(‘l’)

T3

putchar(‘o’)

T4

Figure 3.13: Multiple starting Petri nets for the same Hoare triple

let x := getchar() in
if x < 10 then

putchar(‘l’);
putchar(‘o’)

else
putchar(‘h’);
putchar(‘i’){
λ_. token(t4)

}
The specification of this program states that the program can read a number,
and the subsequent actions are different depending on which number was entered.
Two of the many corresponding Petri nets are in Fig. 3.13.

3.6.3 Copredicates

Consider the Unix yes program, which keeps on printing ‘y’ forever. To write a
specification for yes, we would want the precondition to express permission to
perform an infinite number of input/output actions. But of course we do not
want the precondition to be of infinite length.

To deal with this, we use copredicates, which are somewhat similar to the
predicates of [54]. The major difference is that copredicates allow one to express
an infinite number of heap chunks, while predicates do not.

For yes we can write the specification using copredicates as follows:

copred yes_io(t1) = ∃t2. putchar(t1, ‘y’, t2) ∗ yes_io(t2)

function yes() =

56 I/O VERIFICATION

{
token(t1) ∗
yes_io(t1)

}
putchar(‘y’);
yes(){

λ_. false
}

The assertion language syntax defined earlier (p. 51) allows one to include
copredicate names with arguments, such as yes_io(t1). What does such an
assertion mean? Assertions describe a set of heaps. The assertion semantics is
defined coinductively in Fig. 3.10 on page 51. It says that a heap h is a model for
the assertion yes_io(t1) if h is a model for the assertion (predmap(yes_io))(t1).
predmap maps a predicate name to a function which maps an argument list to
an assertion. In our example above, we have

predmap(yes_io) = λv.

{
∃t2. putchar(t1, ‘y’, t2) ∗ yes_io(t2) if v = t1

false otherwise

This is a bit awkward to write, so therefore above we wrote it in a more handy
style.

So (predmap(yes_io))(t1) describes the same set of heaps as the assertion
∃t2. putchar(t1, ‘y’, t2) ∗ yes_io(t2). This assertion also contains a copredicate
name. Fig. 3.10 on page 51 defines the assertion semantics for copredicates,
using predmap. Note that the assertion semantics of Fig. 3.10 on page 51 uses
coinduction instead of induction. The heaps described by this assertion are of
infinite size and contain an infinite number of chunks.

Copredicates are not only useful to describe large and infinite numbers of
permissions, they also enable compositionality. We just defined the yes_io
action in terms of lower-level actions.

Another use case of (co)predicates is abstraction: one can define a high-level
action, without forcing the user to be exposed to the exact definition of this
action.

3.6.4 no_op

The special no_op action is necessary when one wants to combine underspeci-
fication of the program with compositionality.

Consider the situation where the program is allowed to do one of two options,
but we want one of the two options to be “empty”: instead of doing either one
action or another, do one action, or do nothing.

PROGRAM LOGIC: ASSERTIONS AND PROOF RULES 57

It might feel natural to just write this (incorrectly) as follows:

copred maybe_putchar_io(t1, c, t2) =
putchar(t1, c, t2) ∗ t1 = t2

This is not the right way to express optional I/O. Consider the following example:

copred maybe_a_or_maybe_b_io(t1, c, t2) =
maybe_putchar_io(t1, ‘a’, t2) ∗
maybe_putchar_io(t1, ‘b’, t2)

This does not express to maybe print ‘a’, or maybe print ‘b’. Instead, it expresses
to print either ‘a’ and ‘b’, or ‘b’ and ‘a’, or only ‘b’, or only ‘a’, or nothing.

The correct way to write optional I/O like this:

copred maybe_putchar_io(t1, c, t2) = putchar(t1, c, t2) ∗ no_op(t1, t2)

One can think of no_op as a “dummy” I/O action that represents not actually
doing input or output. With this definition of maybe_putchar_io, the definition
of
maybe_a_or_maybe_b_io has the intended meaning.

3.6.5 Interleaving

Consider the example where we want to mix the actions of printing ‘a’ followed
by printing ‘b’, with the actions of printing ‘c’ followed by printing ‘d’. Note
that ‘a’ must always be printed before printing ‘b’, and ‘c’ must be printed
before printing ‘d’. For this example, we could define an I/O action like this:

copred mix_ab_and_cd_io(t1, t2) =
putchar(t1, ‘a’, ta) ∗ putchar(ta, ‘b’, t11) ∗ putchar(t11, ‘c’, t12) ∗ putchar(t12, ‘d’, t2)

∗ putchar(ta, ‘c’, t21) ∗ putchar(t21, ‘b’, t22) ∗ putchar(t22, ‘d’, t2)
∗ putchar(t21, ‘d’, t32) ∗ putchar(t32, ‘b’, t2)

putchar(t1, ‘c’, tc) ∗ putchar(tc, ‘a’, t41) ∗ putchar(t41, ‘b’, t42) ∗ putchar(t42, ‘d’, t2)
∗ putchar(t41, ‘d’, t52) ∗ putchar(t52, ‘b’, t2)

∗ putchar(tc, ‘d’, t61) ∗ putchar(t61, ‘a’, t62) ∗ putchar(t62, ‘b’, t2)

We can instead write it using split and join:

58 I/O VERIFICATION

copred mix_ab_and_cd_io(t1, t2) =
split(t1, tab1, tcd1) ∗
putchar(tab1, ‘a’, tab2) ∗ putchar(tab2, ‘b’, tab3) ∗
putchar(tcd1, ‘c’, tcd2) ∗ putchar(tcd2, ‘d’, tcd3) ∗
join(tab3, tcd3, t2)

For this example it is still somewhat practical to avoid split and join if we
want to, by writing all possible interleavings by hand. For bigger examples this
will not be practical anymore. Writing all interleavings by hand forces us to
build higher-level I/O actions only on top of BIO actions (instead of also on
top of other higher-level I/O actions), so it breaks compositionality. Split and
join are therefore for bigger programs not just a nice-to-have but are necessary
to support compositionality and interleaving at the same time. Combining
interleaving and compositionality is illustrated by the following example:

copred printstr_io(t1, str, t2) =
if str = “” then
no_op(t1, t2)

else
∃tm. putchar(t1,head(str), tm) ∗
printstr_io(tm, tail(str), t2)

copred mix_hello_and_BYE_io(t1, t2) =
split(t1, th1, tb1) ∗
printstr_io(th1, “hello”, th2) ∗
printstr_io(tb1, “BYE”, tb2) ∗
join(th2, tb2, t2)

The mix_hello_and_bye_io action expresses the action of printing “hello” and
“BYE” interleaved. A precondition token(t1) ∗mix_hello_and_BYE_io(t1, t2)
allows the program to print one of “helloBYE”, “hBeYlElo”, “heBYloE”, and
so on. It does not allow the program to print “ollehBYE”.

3.6.6 Soundness

We now prove soundness of the proof rules for Hoare triples.

PROGRAM LOGIC: ASSERTIONS AND PROOF RULES 59

Definition 31: Whether all function bodies are proven

We say all function bodies are proven if

∀f, v, P,Q. (P,Q) ∈ fC(f)(v)⇒ `
{
P
}

fc(f)(v)
{
Q
}

Instead of using the definition of the weakest precondition directly to show that
a heap satisfies the weakest precondition of a command and a postcondition,
one can use the Hoare proof rules instead:

Theorem 3

If all function bodies are proven, then

∀P, c,Q, h. `
{
P
}
c
{
Q
}
∧ h � P ⇒

⌈
wp(c,

⌈
λv, h′. h′ � Q(v)

⌉
)
⌉
(h)

Proof. Full proof in Appendix A.4 on page 171.

Now we can easily prove the main soundness theorem:

Theorem 4: Soundness

If all function bodies are proven, then
∀P, c,Q. `

{
P
}
c
{
Q
}
⇒ |=

{
P
}
c
{
Q
}

Proof. Follows directly from Theorem 3 and Theorem 2 on page 50.

The main soundness theorem states that if all Hoare triples of the program
functions under consideration are provable using the proof rules, then for any
Hoare triple that is provable the following property holds: for any heap that
satisfies the precondition, and any execution of the program, the trace of I/O
actions of the execution is allowed by that heap. Furthermore, if the execution
terminates and the world did not violate promises of the initial heap, then the
postcondition must hold for the return value.

We mechanically proved a soundness theorem in the Coq proof assistant, but it
uses trace triples similar to [60] instead of the safe relation, it does not support
nonterminating recursion in the proof rules, and assertion satisfaction does

60 I/O VERIFICATION

not allow leaking5 (but the proof rules do). The proof uses the programming
language semantics directly (instead of the weakest precondition semantics). It
is available at [58].

3.7 Examples

We give some examples of programs performing I/O and their specifications.

3.7.1 Tee

The specification of Fig. 3.14 on the facing page allows the program to read from
stdin (until EOF, represented as reading a negative number) and meanwhile
writing what the program reads to stdout and also to stderr. The specifications
do not enforce any buffer size, so the implementation can choose how much to
buffer. In Fig. 3.14 on the next page, the implementation chooses a buffer size
of two. The specification does not enforce whether writing to stderr or stdout
has to happen first.

Note that the specifications are written in a compositional manner: the tee
action is built on top of reads and tee_outs actions, which are built on top
of stdin, stdout, and stderr actions (which we consider BIOs in this example,
though it does not have to).

A proof outline of the tee_out function and of the main function is given in
Fig. 3.15 on page 62.

3.7.2 Read files mentioned in a file

The specifications of Fig. 3.16 on page 63 allow the program to read a file with
filename “f”, which contains a list of filenames, each of length one, until EOF is
encountered (represented as reading a value less than zero). Filenames that are
not in 7bit-ASCII or that consist of the zero character, are ignored. These files
are read (in that order), and their contents is printed (also in the same order).
The specifications do not enforce how much from “f” is read before the next file
is read, or how many files are read before printing them, or how much from one
of the input files is buffered before printing it.

5i.e. it is not true that given h1 � P one can always conclude that h1] h2 � P .

EXAMPLES 61

copred reads(t1, text, t3) =
∃t2, c, sub.

getchar(t1, c, t2)
∗ if c < 0 then text = 〈〉 ∗ t3 = t2
else

(reads(t2, sub, t3) ∗ text = c :: sub)

copred tee_out(t1, c, t2) =
∃tp1, tp2, tr1, tr2.
split(t1, tp1, tr1)
∗ stdout(tp1, c,_, tp2)
∗ stderr(tr1, c,_, tr2)
∗ join(tp2, tr2, t2)

function tee_out(c) ={
token(t1) ∗ tee_out(t1, c, t2)

}
stdout(c);
stderr(c){
λ_. token(t2)

}
copred tee_outs(t1, text, t2) =
∃tout.
if text = 〈〉 then t2 = t1 else (

tee_out(t1,head(text), tout)
∗ tee_outs(tout, tail(text), t2))

copred tee(t1, text, t2) =
∃tr1, tw1, tr2, tw2.
split(t1, tr1, tw1)
∗ reads(tr1, text, tr2)

∗ tee_outs(tw1, text, tw2)
∗ join(tr2, tw2, t2)

copred invariant(t2) =
∃tr1, tr2, tw1, tw2, text.
token(tr1)
∗ reads(tr1, text, tr2)
∗ token(tw1)
∗ tee_outs(tw1, text, tw2)
∗ join(tr2, tw2, t2)

function iter() ={
invariant(t2)

}
let c1 := getchar() in
if c1 ≥ 0 then
let c2 := getchar() in
tee_out(c1);
if c2 ≥ 0 then

tee_out(c2);
iter()

else unit
else unit{
λ_. token(t2)

}
function main() ={

token(t1) ∗ tee(t1, text, t2)
}

iter(){
λ_. token(t2)

}
Figure 3.14: Specification and implementation of the Tee program

62 I/O VERIFICATION

function tee_out(c) ={
token(t1)
∗ tee_out(t1, c, t2)

}

token(tp1)
∗ stdout(tp1, c,_, tp2)
∗ token(tr1)
∗ stderr(tr1, c,_, tr2)
∗ join(tp2, tr2, t2)

stdout(c); token(tp2) ∗ token(tr1)
∗ stderr(tr1, c,_, tr2)
∗ join(tp2, tr2, t2)

stderr(c){

token(tp2) ∗ token(tr2)
∗ join(tp2, tr2, t2)

}
{
λ_. token(t2)

}
function iter() ={

invariant(t2)
}

let c1 := read() in
if c1 ≥ 0 then (

token(trb1)
∗ reads(trb1, sub, tr2)
∗ token(tw1)
∗ tee_outs(tw1,

c1 :: sub, tw2)
∗ join(tr2, tw2, t2)

let c2 := read() in

token(trb2) ∗ token(tw1)
∗ if c2 ≥ 0 then

reads(trb2, subsub, tr2)
∗ tee_outs(tw1,

c1 :: c2 :: subsub, tw2)
else (
tr2 = trb2
∗ tee_outs(tw1,

c1 :: 〈〉, tw2))
∗ join(tr2, tw2, t2)

tee_out(c1);
if c2 ≥ 0 then (

token(trb2)
∗ reads(trb2, subsub, tr2)
∗ token(twb1)
∗ tee_outs(twb1,

c2 :: subsub, tw2)
∗ join(tr2, tw2, t2)

tee_out(c2);{

invariant(t2)
}

iter()
) else unit

) else unit{
λ_. token(t2)

}
function main() ={

token(t1) ∗ tee(t1, text, t2)
}

iter(){
λ_. token(t2)

}
Figure 3.15: Proof outline of the tee_out and main function of the tee program
(〈〉 is the empty list)

EXAMPLES 63

copred freads(t1, f, text, tend) =
∃c, sub, t2.

fread(t1, f, c, t2)
∗ if c ≥ 0 then

freads(t2, f, sub, tend)
∗ text = c :: sub

else (
tend = t2
∗ text = 〈〉)

copred get_file(t1,name, text,
tend) =
∃fh, t2, t3.

fopen(t1,name, fh, t2)
∗ freads(t2, fh, text, t3)
∗ fclose(t3, fh, tend)

copred prints(t1, text, tend) =
∃t2.
if text = 〈〉 then
no_op(t1, tend)

else (
print(t1,head(text),_, t2)
∗ prints(t2, tail(text), tend))

copred get_files(t1, fs, text, tend) =
∃text1, text2, t2, f, sub.
if fs = 〈〉 then
no_op(t1, tend)
∗ text = 〈〉

else (
get_file(t1, f :: 〈〉, text1, t2)
∗ get_files(t2, sub, text2, tend)
∗ fs = f :: sub
∗ text = text1++ text2)

copred read_fname_list(t1, fh,
fs, tend) =
∃c, t2, sub.

fread(t1, fh, c, t2)
∗ if c ≥ 0 then

read_fname_list(t2, fh, sub, tend)
∗ if c > 0 ∧ c ≤ 127 then
fs = c :: sub

else
fs = sub

else (
tend = t2
∗ fs = 〈〉)

copred main(t1, fname, tend) =
∃t2, tmeta, trw, fs, tmeta2, tr, tw,
tmeta3, tr2, tw2, trw2, fh .

fopen(t1, fname, fh, t2)
∗ split(t2, tmeta, trw)
∗ read_fname_list(tmeta, fh,
fs, tmeta2)

∗ fclose(tmeta2, fh, tmeta3)
∗ split(trw, tr, tw)
∗ get_files(tr, fs, text, tr2)
∗ prints(tw, text, tw2)

∗ join(tr2, tw2, trw2)
∗ join(tmeta3, trw2, tend)

function main() ={
token(t1)
∗ main(t1, ‘f’ :: 〈〉, t2)

}
. . .{
λ_. token(t2)

}

Figure 3.16: Specification of a program that prints the contents of all files whose
filenames are in a given list. This list is not static, it is read from a file “f”.

64 I/O VERIFICATION

copred brackets(t1, t2) =
∃topen, tcenter, tclose.
no_op(t1, t2)
∗ print(t1, ‘(’,_, topen)
∗ brackets(topen, tcenter)
∗ print(tcenter, ‘)’,_, tclose)
∗ brackets(tclose, t2)

function main() ={
token(t1) ∗ brackets(t1, t2)

}
print(‘(’);
print(‘)’){
token(t2)

}
Figure 3.17: Specification of a program that is allowed to output any string of
the matching brackets grammar.

The specifications are again built on top of each other, up to standard library
functions like fopen and fclose. They can be considered as BIOs, but this does
not have to be the case.

An implementation is left out, but is included in the VeriFast examples (see
Sec. 3.7.5).

3.7.3 Print any string of the grammar of matching brackets

The specifications of Fig. 3.17 state the program is allowed to print any string
consisting of open and closing brackets, as long as they match up. More precisely,
the program is allowed to print any string of the following grammar:

B ::= (B)B | ε

Here, ε denotes the empty string.

Note that many implementations are a valid implementation for these
specifications, including those that utilize a random number generator.

3.7.4 Turing machine

This example defines a copredicate

copred tm(t1, encoding, initialstate, tapeleft, taperight, t2)

EXAMPLES 65

The second argument is an encoding of a Turing machine. It is a linearization
into a list of integers of the transition table of a Turing machine.

A Turing machine’s transition table normally associates a state and a symbol to
an action (move tape left, move tape right, do not move tape) and a symbol to
be written on the tape. Depending on the current state, and the symbol under
the read head of the tape, the transition table defines what the Turing machine
must do next (in case of a deterministic machine) or can do next (in case of a
non-deterministic one).

Instead of considering input and output as the state of the tape at startup and
termination time of the Turing machine, we add an input and an output action.
The input action reads something from the world and writes it to the current
position on the tape. The output action reads the current symbol from the
tape and “prints” it to the world. Both these actions do not move the tape.
Adding these actions has the advantage that the Turing machine does not have
to terminate and can still perform input/output, which would not be the case
if we only consider output as the tape when a Turing machine ends.

Note that the Turing machine is an argument of the copredicate: it is not
hardcoded and the predicate definition is usable for any Turing machine.

A program’s implementation that has a specification of the form

{
token(t1) ∗ tm(t1, tm, initstate, tapeleft, taperight, t2)

}
. . .{
token(t2)

}
is allowed to perform the input/output actions the Turing machine (given as
argument tm) performs, but no other actions. The implementation is only
allowed to terminate if the Turing machine terminates and upon termination it
must have performed all the input/output actions the Turing machine performs
when executing.

The copredicate supports underspecified input/output (the implementation can
choose to do X or Y) by using non-deterministic Turing machines.

The exact definitions of this example are left out, but annotated verified C
versions are shipped in the examples of VeriFast (see Sec. 3.7.5).

66 I/O VERIFICATION

3.7.5 Mechanical verification of the examples

The examples of Sec. 3.7, Sec. 4.3, and Sec. 4.6.2 have been implemented
in C and verified with the VeriFast [34] program verifier. These files are
available in the directory examples/io shipped with VeriFast[37], or directly
at https://github.com/verifast/verifast/tree/v17.06/examples/io.

Note that VeriFast does not just hunt for bugs. Instead it proves the program
does not violate its specification (and does not crash), for every possible
execution. In the context of the examples, this means VeriFast proves the
implementation does not violate any properties expressed by the I/O style
specification: the program never performs disallowed I/O actions and the I/O
actions performed are correct and in the correct order.

VeriFast performs little automation. Predicates and copredicates are not always
folded and unfolded automatically and the user has to write annotations by
hand to fold and unfold. Therefore, VeriFast typically has fast execution times
at the cost of high annotation overhead. This is also the case with the examples
of this thesis.

The following table lists the size and annotation overhead of the examples, and
how long VeriFast takes to verify them.

Lines
Example Sec. page C Annot. Mixed Time (ms)
Tee 3.7.1 60 27 55 1 292
Read files mentioned in a file 3.7.2 60 20 91 0 148
Matching brackets 3.7.3 64 4 20 0 134
Turing machine 3.7.4 64 7 58 0 149
Non-reusable print_hi 4.3 87 27 170 1 183
Writer cat reader 4.6.2 146 258 935 14 1703

The reported timings are using the Redux SMT solver on a Intel i5-2400 CPU
(max value of 10 runs) using a native build of the VeriFast development version
of 2017-03-30.

https://github.com/verifast/verifast/tree/v17.06/examples/io

A MONOID FOR VERIFYING INPUT/OUTPUT 67

3.8 A monoid for verifying input/output

In this section we sketch how one can implement the I/O verification style in
Iris. Iris [38] is a generic framework for reasoning about concurrent programs
that manipulate a shared resource. As a shared resource we use the trace of
I/O actions that have been performed so far. Performing an I/O action can
thus be considered as modifying the shared state (i.e. the trace) by adding an
I/O action at the end of the trace.

We consider three examples that we will verify using Iris. This is the first
example:{
token(t1) ∗ putchar(t1, c, t2)

}
putchar(c){
token(t2)

}
It consists of a program that prints a character c. We will use Iris to verify
that the implementation does not violate the specification, which states that
the program is allowed to print c. It does not allow the program to print a
character twice or to perform any other I/O actions. The specification also
states that any execution of the program that terminates, must have printed c
upon termination.

This is the second example:{
token(t1) ∗ putchar(t1, ‘l’, t2) ∗ putchar(t2, ‘o’, t3)

}
putchar(‘l’);
putchar(‘o’){
token(t3)

}
The specification states the program is allowed to print the character ‘l’ and the
character ‘o’ but only in this order. It does not allow to first print ‘o’. Remember
that for I/O the order is often important. For example, it is important to first
perform the I/O action of putting on the shield and only after that perform
the I/O action of turning on the laser, instead of the other way around. The
specification also states that any execution of the program that terminates,
must have performed the specified I/O upon termination.

68 I/O VERIFICATION

This is the third example:{
token(t1)
∗ split(t1, t2, t3) ∗ putchar(t2, ‘h’, t22) ∗ putchar(t3, ‘i’, t32) ∗ join(t22, t32, t4)

}
putchar(‘h’) || putchar(‘i’){
token(t4)

}

The specification says the program is allowed to print ‘h’ and to print ‘i’, but
leaves the order unspecified: the program can choose to first print ‘h’ and
then ‘i’, or to first print ‘i’ and then ‘h’. The specification also says that any
terminating execution of the program must have printed both characters upon
termination.

The implementation of the example prints ‘h’ and ‘i’ concurrently. Therefore
there exists an execution that prints ‘h’ before printing ‘i’, and there also exists
an execution that prints ‘i’ before printing ‘h’.

We will verify, using Iris, that these three example programs do not violate their
specifications.

Monoid In order to use Iris, it must be provided an Iris style monoid. This
monoid is used to represent knowledge about the shared resource, such as a
heap or a counter. In our case, the shared resource is the trace of I/O actions
that have happened so far.

An Iris style monoid is a quadruple that consists of:

• A carrier set

• An element in the carrier set called the error element

• An element in the carrier set called the neutral element

• A binary operation on the carrier set, that adheres to some properties.

Carrier set Before studying how such a monoid can be used, we define the
I/O monoid. We first define the carrier set of the monoid informally.

The elements of the carrier set of the I/O monoid are triples (τ̂ , i, h).

A MONOID FOR VERIFYING INPUT/OUTPUT 69

h1
bio(vo,vi)−−−−−−→ h h

τ−→
∗
h2

h1
bio(vo,vi)·τ−−−−−−−→

∗
h2

h1
bio(vo,vi)−−−−−−→ h vi 6= v′i

h1
bio(vo,v

′
i)·τ−−−−−−−→

∗
h2

h1
ε−→ h h

τ−→
∗
h2

h1
τ−→
∗
h2

Figure 3.18: The relation h τ−→
∗
h

• τ̂ can be a trace τ , or it can be ε. If τ̂ is a trace, then it represents the
actual trace of input/output actions performed so far (by all threads). If
τ̂ = ε, then it represents absence of knowledge of the input/output actions
performed so far. If τ̂ = 〈〉, i.e. the trace is empty, it expresses knowledge
that there is no input/output performed. Note the difference between
absence of knowledge of I/O and knowledge of absence of I/O.

• h is a heap that represents the local permissions to perform input/output
actions in the future. By “local” we mean only of the thread under
consideration, not of all threads combined.

• i represents the set of permissions to perform input/output actions
“initially” at the time we conceptually start recording τ̂ and τ̂ was therefore
still the empty trace 〈〉. i can also be equal to ε. Then it expresses absence
of knowledge of the initial permissions.

Not all such triples are a member of the carrier set. More specifically, we only
consider triples where h is a subheap of one of the possible heaps that can be
obtained by performing the I/O actions in τ̂ starting from i.

We now formally define the carrier set of the I/O monoid:

|M | = {⊥} ∪ {(τ̂ , i, h) | τ̂ ∈ |Ex(Traces)|+ ∧
i ∈ Heaps ∪ {ε} ∧
h ∈ Heaps ∧(
τ̂ 6= ε ∧ i 6= ε⇒ ∃h′ ∈ Heaps. i τ̂−→

∗
h′ ∧ h ⊆ h′

)
}

70 I/O VERIFICATION

Here, the relation h1
τ−→
∗
h2 expresses that one can perform the actions in τ

given the permissions in h1 and that performing these actions can yield h2. It
is defined inductively in Fig. 3.18 on the previous page.

|Ex(Traces)|+ is the set Traces ∪ {ε}. The set Traces is the set of all traces as
defined in Sec. 3.3, although we don’t actually need that traces can be infinite.

The error element of the monoid is ⊥. The neutral element is (ε, ε, {[]}).

Operation Besides a carrier set, an Iris style monoid also has a binary
operation. When considering elements of the monoid as representation of
knowledge, performing the operation on the elements can be considered as
combining knowledge. It is possible the two “knowledges” from the two
elements contradict each other. In that case, the operation will return ⊥,
i.e. if the knowledge encoded in an element m1 of the carrier set contradicts the
knowledge of m2, then m1 ·m2 = ⊥.

The operation of the I/O monoid is defined as follows:

• (τ̂1, i1, h1) · (τ̂2, i2, h2) = (τ̂1 · τ̂2, i1 · i2, h1]h2) if this is an element of |M |.

• m1 ·m2 = ⊥ for all other cases

This definition uses an operation on |Ex(Traces)|+ ∪ {⊥}, that is defined as
follows (τ̂ ranges over |Ex(Traces)|+):

• ε · τ̂ = τ̂ and τ̂ · ε = τ̂

• _ ·_ = ⊥ for all other cases

The operation on the I/O monoid also uses an operation on Heaps ∪ {ε,⊥},
which is defined as follows (i ranges over Heaps ∪ {ε}, h ranges over Heaps):

• i · ε = i and i · ε = i

• h · h = h

• _ ·_ = ⊥ for all other cases. Note that h1 · h2 = ⊥ if h1 6= h2.

Assertions In Iris, the assertion bmc denotes the physical state is represented
by m where m is an element of the carrier of a monoid. In our case, bτc means
the actions in the trace τ are the I/O actions that have happened so far (in

A MONOID FOR VERIFYING INPUT/OUTPUT 71

that order). In other use cases of Iris, the physical state could be a classic heap
(mapping addresses to values) or the content of a counter, but we will only focus
on I/O here.

In Iris, the assertion m expresses “ownership” of m where m is an element of
the carrier of a monoid. Multiple threads can have such ownerships. You can
think of it as follows: there exists a ghost state m, and m = m1 ·m2 ·m3 · ...
where the ownerships m1 , m2 , m3 , . . . are spread over threads.

A property of an assertion of the form m is that m1 ·m2 is the same as the
assertion m1 ∗ m2 . So you can swap one with the other.

In our case, we will use assertions m where m are elements of the carrier of
the I/O monoid, i.e. m ∈ |M |.

We translate the assertions as used in the I/O verification approach to assertions
in the Iris framework as follows:

• token(t)⇔ (ε, ε, {[token(t)]})

• bio(t1, vo, vi, t2)⇔ (ε, ε, {[bio(t1, vo, vi, t2)]})

• split(t1, t2, t3)⇔ (ε, ε, {[split(t1, t2, t3)]})

• join(t1, t2, t3)⇔ (ε, ε, {[join(t1, t2, t3)]})

Frame preserving updates Now let us see how we can update this ghost state.
We cannot simply replace any ghost state m1 into any m2 : it is possible some
other thread has a m3 that conflicts with m2 , in other words: m3 ·m2 = ⊥.

More generally, Iris uses the concept of a frame preserving update. We say there
is a frame preserving update from an element m of (the carrier set of) a monoid
to a set B of elements of the same monoid, denoted m B, iff for every element
f of the monoid that does not conflict with m, there is an element in B that
does not conflict with f . In other words:

m B ⇔ ∀f.f ·m 6= ⊥ ⇒ ∃b ∈ B. f · b 6= ⊥

Let us look at which frame preserving updates hold for the I/O monoid.

The following frame preserving update corresponds to performing an I/O action:

(τ, ε, {[token(t1), bio(t1, v, r, t2)]}]h) {(τ ++ bio(v, r) :: 〈〉, ε, {[token(t2)]}]h)}

72 I/O VERIFICATION

This corresponds to performing a split:

(ε, ε, {[token(t1), split(t1, t2, t3)]}] h) {(ε, ε, {[token(t2), token(t3)]}] h)}

And this corresponds to performing a join:

(ε, ε, {[token(t1), token(t2), join(t1, t2, t3)]}] h) {(ε, ε, {[token(t3)]}] h)}

Note that you cannot perform a frame preserving update to create more
permissions. For example:

(τ̂ , i, {[token(t1)]}] h)�� {(τ̂ , i, {[token(t1), bio(t1, v, r, t2)]}] h)}

This is the reason why elements of the carrier set of the I/O monoid remember
the initial heap (“i”): it prevents creation of new permissions.

Also, you cannot perform a frame preserving update that performs I/O without
actually modifying the trace of performed I/O. For example:

m�� {b}

where
m = (ε, ε, {[token(t1), bio(t1, v, r, t2)]})

and
b = (ε, ε, {[token(t2)]})

This is not a frame preserving update since for f = (〈〉, {[token(t1), bio(t1, v, r,
t2)]}, {[]}) we have f ·m 6= ⊥ while f · b = ⊥.

Invariant While an assertion m expresses ghost ownership, it does not directly
state anything about the physical state. Iris uses invariants to link the ghost
state with the physical state. For the I/O monoid, we use the following invariant:

IoInv = ∃τ ∈ Traces. (τ, ε, {[]}) ∗ bτc

Now we illustrate with an example how the physical state can be updated. In
this example, we sketch a proof outline of the first example program:{
token(t1) ∗ putchar(t1, c, t2)

}
putchar(c){
token(t2)

}

A MONOID FOR VERIFYING INPUT/OUTPUT 73

The proof outline sketch is as follows:{
token(t1) ∗ putchar(t1, c, t2)

}
E] {IoInv}{

(ε, ε, {[token(t1)]}) ∗ (ε, ε, {[putchar(t1, c, t2)]})
}
E] {IoInv} (ε, ε, {[token(t1)]}) ∗ (ε, ε, {[putchar(t1, c, t2)]}) ∗

∃τ ∈ Traces . (τ, ε, {[]}) ∗ bτc

E

(open invariant)

{
(ε, ε, {[token(t1)]}) ∗ (ε, ε, {[putchar(t1, c, t2)]}) ∗ (τ, ε, {[]}) ∗ bτc

}
E{

(ε, ε, {[token(t1)]}) · (ε, ε, {[putchar(t1, c, t2)]}) · (τ, ε, {[]}) ∗ bτc
}
E{

(τ, ε, {[token(t1), putchar(t1, c, t2)]}) ∗ bτc
}
E{

(τ ++ putchar(c) :: 〈〉, ε, {[token(t2)]}) ∗ bτc
}
E

(frame preserving update)

putchar(c){
(τ ++ putchar(c) :: 〈〉, ε, {[token(t2)]}) ∗ bτ ++ putchar(c) :: 〈〉c

}
E{

(ε, ε, {[token(t2)]}) ∗ ∃τ ′ ∈ Traces . (τ ′, ε, {[]}) ∗ bτ ′c
}
E{

(ε, ε, {[token(t2)]})
}
E] {IoInv}{

token(t2)
}
E] {IoInv}

For the second example, we can reuse the previous example twice:{
token(t1) ∗ putchar(t1, ‘l’, t2) ∗ putchar(t2, ‘o’, t3)

}
E] {IoInv}

putchar(‘l’){
token(t2) ∗ putchar(t2, ‘o’, t3)

}
E] {IoInv}

putchar(‘o’)

74 I/O VERIFICATION

{
token(t3)

}
E] {IoInv}

For the third example we have to perform some extra frame preserving updates
to split and join the tokens:

{
token(t1) ∗ split(t1, t2, t3) ∗ putchar(t2, ‘h’, t22)
∗ putchar(t3, ‘i’, t32) ∗ join(t22, t32, t4)

}
E] {IoInv}

token(t2) ∗ token(t3)
∗ putchar(t2, ‘h’, t22) ∗ putchar(t3, ‘i’, t32)
∗ join(t22, t32, t4)

E] {IoInv}

(frame preserving update)

{
token(t2)
∗ putchar(t2, ‘h’, t22)

}
E] {IoInv}

putchar(‘h’){
token(t22)

}
E] {IoInv}

∥∥∥∥∥∥∥∥∥∥∥∥∥

{
token(t3)
∗ putchar(t3, ‘i’, t32)

}
E] {IoInv}

putchar(‘i’){
token(t32)

}
E] {IoInv}{

token(t22) ∗ token(t32) ∗ join(t22, t32, t4)
}
E] {IoInv}{

token(t4)
}
E] {IoInv}

(frame preserving update)

3.9 Related work

LTL and CTL are well known languages that allow to express temporal
properties. Model checking [14, 66, 15] allows checking these properties expressed
in these languages for a model. The model can be extracted automatically
from the program one wants to verify. Such temporal languages allow to
express liveness properties. Unfortunately, model checking suffers from the
state explosion problem [15], which would occur in a setting with an unbounded
number of threads. Our approach works in a concurrent setting (by simply
integrating it with concurrent separation logic), and also works in a setting with
an unbounded number of threads.

We use Petri nets as a visualization of heaps, but compositionality and support
for expressing that the program should react differently depending on the

RELATED WORK 75

input is in this thesis not achieved through Petri nets. These features are
achieved through the assertion language and by using a set of assertions as
the specification of a program. Coloured Petri nets [40] work the other way
around by extending Petri nets itself to support compositionality. Note that
our approach does not solely consists of a way to express properties one wishes
to verify: it also includes a way to verify software.

Nakata and Uustalu [47] define a coinductive big step semantics for programs
that do not necessarily terminate. A command is associated to a potentially
infinite trace of states, where a state is a mapping from variable names to integer
values. They do not focus on I/O, but we expect it should be feasible to extend
their approach for I/O verification. We use their coinductive big step semantics
for the formalization of the I/O approach for programs that do I/O (instead of
memory manipulation). Their work uses postconditions that express properties
of the trace directly, even for executions that never terminate, while we use
preconditions to express the allowed I/O. Their postcondition based approach
has the advantage that one can express that actions must have happened, even
for nonterminating executions, while we only support verifying that actions
have happened for terminating executions (although at function boundaries we
do verify that the intended I/O has happened at that boundary). To support a
postcondition based approach, they define an assertion language inspired by
interval temporal logic, and an accompanying Hoare logic. Their approach
allows to prove liveness properties, which we do not support.

Linear Time Calculus (LTC) [6] extends first order logic in order to support
modeling dynamic systems. Actions are represented using predicates that get
an argument that expresses when in time the action happens. This argument is
a natural number. This is somewhat similar to our approach, but we use two
“time” arguments (places) for actions, and it is not always known whether one
place is before or after another.

While we have examples, we do not have a case study of any considerable size.
Beuster, Henrich and Wagner [5] report on verifying I/O properties of an email
client with a text based (but not commandline) UI. The approach identifies
points in the main loop of the program and only supports I/O to the screen
at these points. In bigger programs typically not only the main loop performs
I/O: other functions and libraries perform I/O as well. Our approach is not
restricted to programs that only perform I/O in the main loop. Furthermore,
we support modularity and compositionality (I/O actions can be defined on top
of other I/O actions) to make verification of bigger software more practical.

Iris [38] provides a framework for reasoning about concurrent programs that
manipulate a shared resource. Performing I/O can be considered manipulating
a shared resource. Sec. 3.8 explains a way to implement our approach in the

76 I/O VERIFICATION

Iris framework.

3.10 Conclusions and future work

We developed an approach for verifying that programs that perform I/O only
perform desired I/O in a desired order. Furthermore, we sketched how one
could implement the verification style in the Iris framework.

The approach supports modularity, compositionality, concurrency, reading and
input-dependent behaviour, reuse of specifications and reuse of code, so for
verifying programs that perform I/O we hope the approach is applicable to
more real-world programs than the provided examples. However, without any
case study the feasibility is less certain. Such a case study is future work.

Future work regarding implementing the approach in Iris include implementing
the approach in Iris’ Coq framework.

Acknowledgements

We would like to thank Amin Timany for together fixing the I/O monoid after
an error was found.

List of symbols (in-memory)

agree(C , C) Chunks do not conflict Def. 40 p. 107
atintro Command to introduce an atomic space Def. 53 p. 113
atdel Command to delete an atomic space Def. 53 p. 113
c A command Def. 33 p. 103,

Def. 52 p. 113,
Def. 53 p. 113,
Def. 79 p. 140

C ∈ Chunks Heap chunks Def. 36 p. 104,
Def. 54 p. 113,
Def. 58 p. 116,
Def. 58 p. 116,
Def. 80 p. 141

e An expression. Note: an expression is
also an assertion.

Def. 33 p. 103

emp The assertion “true” Def. 48 p. 111
er(c) Erasure Fig. 4.16 p. 148
erat(h) Remove all atomic space chunks Def. 73 p. 130
eval The operation evaluation function Def. 35 p. 104
g The ghost level “ghost” Def. 33 p. 103
gc(e , e , e) A ghost cell (only if e is an value), or a

ghost cell assertion
Def. 58 p. 116,
Def. 59 p. 117

77

78 List of symbols (in-memory)

gcf(e , e) A ghost cell family heap chunk (only if
e is a value), or a ghost cell family heap
chunk assertion.

Def. 58 p. 116,
Def. 59 p. 117

h ∈ Heaps Heap containing (fractions of) heap
chunks

Def. 37 p. 104

h̃ Either a heap, ⊥ or inf Def. 39 p. 107
i ∈ Z An integer value
I ∈ {inat, outat} Inside or outside atomic space Sec. 4.3.8 p. 115

inat Inside atomic space Sec. 4.3.8 p. 115
inf Used inside a trace or outcome for

infinite atomic executions
Def. 39 p. 107,
Def. 44 p. 109

inv(h , I) Multiset of assertions of atomic space
chunks

Def. 74 p. 130

none Constructor used for when a place has
no parent place

Def. 32 p. 90,
p. 90

O An outcome Def. 44 p. 109
OK(τ) Outcome of trace and empty heap does

not crash
Def. 85 p. 151

outat Outside atomic space Sec. 4.3.8 p. 115
P An assertion Def. 48 p. 111,

Def. 55 p. 114,
Def. 59 p. 117,
Def. 64 p. 127,
Def. 81 p. 141

pa(e , e) Prophecy assignment command Def. 79 p. 140
pc() Prophecy create command Def. 79 p. 140
place Constructor for a place of a Petri net Def. 32 p. 90,

p. 90, p. 95,
p. 118

pr(e , e) Prophecy chunk (only if e is a value) or
prophecy chunk assertion

Def. 80 p. 141,
Def. 81 p. 141

Q An assertion. See: P .
r The ghost level “real” Def. 33 p. 103
safe Safe trace Def. 76 p. 131

79

v A value Def. 33 p. 103,
Def. 47 p. 110

⊥ The error value. Also used for crashing
traces and outcomes.

Def. 33 p. 103,
Def. 39 p. 107,
Def. 44 p. 109

{ f : v } A record value Def. 33 p. 103
l ∈ {g, r} Ghost level Def. 33 p. 103

v 7→ v Pointsto heap chunk. See also: e 7→ e. Def. 36 p. 104
π ∈ Q+ Fraction
{[[π] C]} A heap containing a π fraction of chunk

C. Comma separated for multiple
chunks. See also: Heaps.

{[]} The empty heap
c ⇓ τ , v Program execution Fig. 4.3 p. 106,

Fig. 4.7 p. 114,
Fig. 4.9 p. 116,
Fig. 4.13 p. 140

τ A trace Def. 39 p. 107
h] h Sum of heaps Def. 41 p. 108
τ ; τ Sequential composition of traces Def. 42 p. 108
τ1 ∈ τ2 || τ3 τ1 is a parallel composition of τ2 and τ3.

“∈” is part of the notation.
Fig. 4.2 p. 105

O + 1 Outcome increase Def. 45 p. 109
h , τ → O Outcome of a trace Def. 46 p. 109
P ∗ P Separating conjunction assertion Def. 48 p. 111
e 7→ e Pointsto assertion. See also: v 7→ v. Def. 48 p. 111
P ∨ P Disjunction assetrion Def. 48 p. 111
∃ x . P Existential quantification assertion Def. 48 p. 111
[π] P Fractional assertion Def. 48 p. 111
e (e) Predicate application assertion Def. 48 p. 111
h �

F
P Heap h is a model for a assertion P Fig. 4.5 p. 110,

Fig. 4.12 p. 132

80 List of symbols (in-memory)

`
{
P
}
c
{
Q
} l
I

Hoare triple is provable according to the
proof rules

Def. 50 p. 111,
Fig. 4.8 p. 114,
Fig. 4.10 p. 117,
Fig. 4.14 p. 141

P1 → P2 Assertion P1 implies P2 Def. 51 p. 111
〈 c 〉 An atomic block command Def. 52 p. 113

P Atomic space chunk, or atomic space
chunk assertion

Def. 54 p. 113,
Def. 55 p. 114

Λ ∈ N× N Step Def. 65 p. 128
FΛ Set of Hoare triples that hold for step Λ Def. 78 p. 132
|=
{
P
}
c
{
Q
}
I

Validity of a Hoare triple Def. 75 p. 130

Chapter 4

I/O style verification of
memory-manipulating
programs

Abstract

We present a program verification approach that uses an input/output style of
reasoning, to verify programs that do not perform I/O but instead manipulate
memory. The approach is sound, modular, compositional (I/O actions can
be defined on top of other actions) and supports concurrency. It uses Petri
nets, separation logic, atomic spaces, ghost cells, higher order functions and
prophecies. We have implemented the approach in the VeriFast verifier.

Publication data

• W. Penninckx and B. Jacobs. I/O style verification of memory-
manipulating programs. To be submitted

• W. Penninckx and B. Jacobs. A higher-order-ish logic with prophecies for
concurrency verification. To be submitted

81

82 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

4.1 Introduction

Some pieces of programs perform input/output (I/O) and some do not. A
calculator performs I/O, a sorting algorithm implementation usually does not.
The calculator reads from buttons and writes to a screen. The sorting algorithm
reads from memory and writes to memory. In a way, both manipulate a shared
resource. For pieces of programs that manipulate memory (and do not perform
I/O), it is known how to verify correctness properties. We know how to prove
that they do not crash and produce correct results, even in some difficult
contexts such as concurrency and aliasing.

One could try to apply approaches for memory manipulation to both pieces
of programs that do manipulate memory, and those that actually perform
I/O. In this chapter, we work the other way around: we present a way to use
a verification approach for input/output for pieces of programs that do not
perform input/output, but manipulate memory. In other words, we present
how one can reason in an I/O style when no I/O is involved.

This can be useful when an API can both be implemented using I/O and using
memory-manipulation. For example, we might want to have one filesystem API,
but the implementation can be a network filesystem (using I/O) or a filesystem
in RAM.

Another use case is when the specification of a function should state the function
“does an action” such as for the Template Method design pattern. The Template
Method design pattern [26] consists of having a method (called the template
method) in a superclass which calls abstract methods. The abstract methods
are implemented in subclasses. The specification of the template method (in the
superclass) is "to call methods", i.e. that an action happens, but it is unknown
what these methods will be since subclasses can be added in the future. Our
approach allows to specify such a template method (both when (some) subclasses
do and (some) subclasses do not perform I/O), since the I/O style specifications
allow to specify that actions happen.

We build upon the I/O verification approach of Chapter 3. This I/O verification
approach provides a Hoare logic where the preconditions and postconditions
describe sets of Petri nets. The transitions of the Petri net correspond to
actions by the program and by the environment. Nondeterminism by (or
underspecification of) the environment is modeled by describing multiple Petri
nets and nondeterminism by the program is described by using Petri nets that
have multiple executions. The program satisfies its specification if for every
Petri net of the precondition, every execution of the program simulates an
execution of that Petri net, which yields (if the program terminates) a Petri net
that is in the set of the Petri nets of the postcondition.

INTRODUCTION 83

Throughout this chapter we define a programming language, together with Hoare
logic style proof rules and a soundness proof (except erasure). The programming
language supports manipulating a memory heap and does not have built-in
support for performing I/O. We show how one can use the I/O verification
approach with I/O style specifications, in that programming language which
does not support I/O itself. Pieces of the program can interact with each other:
one function can read from a buffer while another function running concurrently
in another thread writes to that buffer. Both functions have an I/O style
specification. The caller can itself have an I/O style specification, but it is
possible that this is not the case. If this is not the case, the caller can construct
the I/O style precondition of the callee, and obtain knowledge of the memory
state using the I/O style postcondition of the callee.

The approach presented here supports concurrency, split/join, interleaving of
actions, interaction between threads (one thread performs writes and another
thread reads what is written and acts differently depending on what it reads),
and reuse of code and of specifications.

The programming language we define in this chapter supports concurrency,
atomic blocks with atomic spaces, ghost cell families (ghost key-value mappings),
higher-order functions, and prophecies (obtaining a logical value that eventually
will be known to be equal to a value in the program).

The approach works as follows. Which place a token in a Petri net has reached
tells the I/O actions performed so far. Petri nets support interleaving through
multiple tokens. An invariant relates the performed I/O actions associated
with such tokens to the data stored in memory. Verifying an application thus
involves writing such an invariant specifically for the application. Functions
that perform I/O must not invalidate this invariant and this is enforced by
their specifications by having (a fraction of) an atomic space for this invariant
in the tokens that are passed between functions as part of their specifications.
For non-composite I/O actions a proof that performing the I/O action does
not invalidate the invariant, is shipped in the I/O action description as a ghost
function.

We build up the approach over multiple sections. As a warmup, Sec. 4.2 simply
encodes the memory state in the places. A token assertion then states the
memory state satisfies the information encoded in the place. In Sec. 4.3 we add
support for concurrency and split/join. Instead of encoding the memory state in
places, places encode the list of I/O actions executed in one path of the Petri net
executed so far, either directly as such a list or in a simplified form such as the
last character written in the path. This encoding of actions is called the progress.
Since Petri nets can have parallelism because of multiple tokens, multiple such
progresses can exist. Tokens own a fraction of the knowledge that an invariant

84 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

exists and holds, together with a 1⁄2 fraction of a ghost cell containing the
progress. The invariant contains the other 1⁄2 fractions of the ghost cells of the
progresses and constrains the memory state based on the progresses. Sec. 4.4
adds support for reusability by including the application-specific part of the
invariant in the places. I/O actions that are not composite ship a proof as
a ghost function, which proves that performing this I/O action preserves the
invariant. Sec. 4.5 explains how reading works by using prophecies. Sec. 4.6
explains how one can use multiple instances of the same data structure in the
memory state by using a ghost cell per instance. The ghost cell tracks the
content of the data structure. The invariant contains a 1⁄2 fraction of these
ghost cells.

Sec. 4.7 defines erasure (removing the ghost code from commands that mix
ghost code and real code) and Sec. 4.8 provides a soundness proof (except
erasure). We end the chapter with a discussion of related work, future work,
and conclusions (Sec. 4.9).

4.2 Warmup without concurrency

We start with a small example that shows how the I/O style verification approach
can be applied to a program that just writes a character into a memory buffer.
This example uses a minimal number of features; support for more features is
studied later.

The program of the example is as follows:

putchar = λb, c.
[b] := c

print_hi = λb.
putchar(b, ‘h’);
putchar(b, ‘i’)

main = λ.
let b := cons(0) in
print_hi(b);
let x := [b] in
dispose(b);
x

WARMUP WITHOUT CONCURRENCY 85

The example does not use the programming language defined earlier. We do
not use BIO commands because the programs do not perform actual I/O, but
we use memory allocation (cons(e) allocates memory cells with consecutive
addresses), deallocation (dispose(e) frees one memory cell), writing to memory
cells ([e] := e) and reading from memory cells ([e]).

The functions (putchar , print_hi, main) are functions in the programming
language itself (not in the metalogic). The putchar function performs a write.
We implement it as just writing to a memory buffer. This simply overwrites the
old content. print_hi prints ‘h’ followed by ‘i’. It is implemented on top of the
putchar function. main allocates a buffer, calls print_hi (which writes twice to
that buffer) and deallocates the buffer. It returns the content the buffer had
before deallocation.

In the programming language, the heap contains memory cells. Assertions can
express the existence of a memory cell, e.g. the assertion 4 7→ 5 expresses that
on address 4, there is value 5.

An assertion can be a predicate value application, like token(t1). token and
putchar_io are predicate values. A predicate value is a lambda function in the
assertion language itself that can be applied to arguments. Predicate values are
somewhat similar to copredicates (Sec. 3.6.3), but cannot express an infinite
number of permissions. To more visually distinguish predicate value definitions
from function definitions, we write predicate before a predicate value definition.

This simple programming and assertion language suffices to verify the example
in an I/O style, as follows.

predicate token = λb, t1. b 7→ t1

predicate putchar_io = λt1, c, t2. (t2 = c)

putchar = λb, c.{
token(b, t1) ∗ putchar_io(t1, c, t2)

}{
b 7→ t1 ∗ t2 = c

}
[b] := c{

b 7→ t2 ∗ t2 = c
}{

token(b, t2)
}

predicate print_hi_io = λt1, t2.
∃th.putchar_io(t1, ‘h’, th) ∗ putchar_io(th, ‘i’, t2)

86 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

print_hi = λb.{
token(b, t1) ∗ print_hi_io(t1, t2)

}
putchar(b, ‘h’);
putchar(b, ‘i’){

token(b, t2)
}

main = λ.{
emp

}
let b := cons(0) in{

b 7→ 0
}{

token(b, 0)
}{

token(b, 0) ∗ putchar_io(0, ‘h’, ‘h’) ∗ putchar_io(‘h’, ‘i’, ‘i’)
}{

token(b, 0) ∗ print_hi_io(0, ‘i’)
}

print_hi(b);{
token(b, ‘i’)

}{
b 7→ ‘i’

}
let x := [b] in{

b 7→ ‘i’ ∗ x = ‘i’
}

dispose(b);{
x = ‘i’

}
x{

res = ‘i’
}

So, how does the example work? When considering input/output as a style of
reasoning, we would consider input/output actions as observations/modifications
of some shared resource, such as the network or a filesystem. In this example,
the shared resource is not yet actually shared. It is just a buffer of one integer.
An assertion token(b, t) states that the information about the shared resource
encoded in the place t is currently true for the buffer at address b. The encoding
of information about the shared resource in a place is in this example done
by having the place equal to the value of the shared resource. As an example,
the place 7 expresses that the shared resource is equal to the value 7, and the
assertion token(b, 7) expresses that currently this is the case for the buffer b.

Consider an instance of an I/O action, namely putchar_io(4, 5, 5). It expresses
the action of going from a buffer with value 4 (the first argument), to a buffer

CONCURRENCY 87

with value 5 (the last argument) by writing 5 (the second argument) to the
buffer.

Observe the flow of the example program: main starts with a non-I/O style
precondition. It calls print_hi. print_hi has an I/O style precondition and
reaches its I/O style postcondition. main obtains the knowledge encoded in
that I/O style postcondition, and terminates by reaching its non-I/O style
postcondition, ensuring properties about the memory state in a non-I/O style.

print_hi only calls functions with an I/O style specification. For verifying
print_hi it is fine to ignore whether the I/O actions will be actual I/O or memory
manipulation: for both cases the verification is the same. This also means
it is fine to later switch between I/O and memory-manipulation: verification
of print_hi will not have to be done again. In other words, print_hi lives in
an “I/O style” world and does not care whether I/O style means real I/O or
memory manipulation.

putchar (called by print_hi) has an I/O style specification, but is implemented
by manipulating memory.

4.3 Concurrency

I/O style verification gets more interesting when concurrency is involved.
Consider two threads (or programs or functions) running concurrently, each
with an I/O style specification. They both work on the same shared resource –
say a shared memory buffer. Can we verify the end result (say the state of the
buffer) after both threads have ended? It gets more interesting if one thread
can read the memory that another thread writes to, but we postpone reading
until Sec. 4.5 to build up the explanation more gradually.

4.3.1 I/O threads

The following example uses concurrency: the command c1 || c2 concurrently
executes the command c1 and the command c2, and continues after both c1
and c2 are terminated. So in the following example, the function print_hi
concurrently calls print_h(b) and print_i(b) (we postpone a concurrency-
enabled definition of putchar):

print_h = λb.
putchar(b, ‘h’)

88 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

print_i = λb.
putchar(b, ‘i’)

print_hi = λb.
(

print_h(b)
| |

print_i(b)
)

Upon executing print_hi, ‘h’ and ‘i’ will be written concurrently to the buffer,
so after executing print_hi the buffer will either contain ‘h’ or ‘i’.

Remember that split and join allow us to not constrain the ordering of a set of
I/O actions relative to another set. So we would like to verify the example in a
style as shown below (ignore the argument r for now)

print_hi = λb ; r .
token(b, t1) ∗ split_io(t1, th1 , ti1)
∗ putchar_io(th1 , ‘h’, th2 , r.“h”)
∗ putchar_io(ti1 , ‘i’, ti2 , r.“i”)
∗ join_io(th2 , ti2 , t2)

let _ := split() in Ê{
. . . ∗ token(b, ti1) ∗ token(b, th1)

}
({

token(b, th1)
∗ putchar_io(th1 , ‘h’, th2 , r.“h”)

}
print_h(b ; r.“h”)

{
token(b, th2)

}
| |{

token(b, ti1)
∗ putchar_io(ti1 , ‘i’, ti2 , r.“i”)

}
print_i(b ; r.“i”)

{
token(b, ti2)

}
);{

token(b, th2) ∗ token(b, ti2) ∗ join_io(th2 , ti2 , t2)
}

Ë

let _ := join() in unit Ì{
token(b, t2)

}
This example starts from one token. This token is split in two (Ê). Two parallel
threads are started: each will use one token. One thread writes ‘h’ and the

CONCURRENCY 89

t1 t2

t3 t4

t5

t6

t7

t8 t9 t10

t11

Figure 4.1: Every gray box is one I/O thread of this Petri net

other writes ‘i’ (concurrently). After both threads terminate, we have obtained
two tokens: each from one thread (Ë). The resulting tokens are joined (Ì).

It is clear that our previous definitions of token and places for in-memory I/O
will not suffice to do this. We also have to define split_io, join_io, split, and
join, but we start with token.

To perform verification in such a style, we let the token “returned” by the
second thread (token(b, ti2)) express that the thread has printed ‘i’, without
necessarily constraining what another thread has or has not done. The token
obtained by joining the two tokens from the threads (token(b, t2)) will then
express that the first thread has printed ‘h’ and the second ‘i’.

In order to do that, we construct a new definition for places (Sec. 32 on the
following page), and for that, we first introduce the concept of I/O threads.

Given a Petri net, we can partition the places such that in any partition there
is no split or join between two places of that partition, while every partition is
as large as possible. In other words, the boundaries of the partition are splits
and joins. See Fig. 4.1 for an example. Every partition is what we call an I/O
thread.

Given a Petri net and one I/O thread assigned as the “initial” one, one can
identify every I/O thread by saying how it is related to the initial one, e.g. in
Fig. 4.1 the I/O thread of t3 is the left child1 of the I/O thread of t1. We will
use this in our annotations, so we define a grammar for it:

iot ::= init | left(iot) | right(iot) | join(iot, iot)
1one can arbitrary assign whether a child is the left or right child of a parent, as long as a

parent does not have multiple left or multiple right children.

90 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

v ::= . . . | iot

We will write iot(t) to express the I/O thread of place t. So in our example of
Fig. 4.1 on the previous page: iot(t7) = join(left(left(init)), right(left(init))).

An I/O thread can correspond to a regular thread that is executed concurrently,
but it does not have to. Also keep in mind that with an I/O style specification
multiple Petri nets can be associated and these Petri nets can look entirely
different from each other. Hence, with a specification multiple sets of I/O
threads can be associated.

4.3.2 Places
Definition 32: Places

place ::= none | place(iot, v, place, place, λid. P , vid)

Let us build up the above definition gradually2. We let a place state which I/O
thread it belongs to (the dots (. . .) represent things we will add and explain
later):

place ::= . . . | place(iot, . . .)

A value can be a place:

v ::= . . . | place

We also let a place contain what the progress is of that place. The progress
represents the actions that the I/O thread of the place has performed.

place ::= . . . | place(iot, v, . . .)

The progress can be encoded in various ways, but we will stick to simply a list
of characters in this example. So in our print_hi example, the progress of t1,
of th1 and of ti1 is the empty list, the progress of th2 is 〈‘h’〉, the progress of ti2
is 〈‘i’〉 and the progress of t2 is again the empty list.

A place also remembers the “parent” place(s); that is the last place of the
previous I/O thread(s):

2To not explain everything at once, we spread the explanation over multiple pages: p. 90,
p. 95, p. 118.

CONCURRENCY 91

place ::= none | place(iot, v, place, place, . . .)

This allows us to know the progress of terminated I/O threads. For example,
as soon as we have obtained token(t3) (in Fig. 4.1 on page 89) we can now still
know what the progress of iot(t1) is.

In case the place exists because of a join, it has two parent places. Note that
in the example of Fig. 4.1 on page 89, t3 and t4 have the same parent place,
namely t2.

This also works with nested splits and joins, and joins after joins. In the example
of Fig. 4.1 on page 89, t11 will still encode the progress that has been made for
t1.

For the print_hi example, the places are as follows:

t1 = place(init, 〈〉,none,none, . . .)
th1 = place(left(init), 〈〉, t1,none, . . .)
th2 = place(left(init), 〈‘h’〉, t1,none, . . .)
ti1 = place(right(init), 〈〉, t1,none, . . .)
ti2 = place(right(init), 〈‘i’〉, t1,none, . . .)
t2 = place(join(left(init), right(init)), 〈〉, th2 , ti2 , . . .)

We use the notation t.fieldname to retrieve a field of the place t, for example
t.parent1 returns the first parent of t (i.e. the third field).

4.3.3 Tokens, ghost cell families, fractions and atomic spaces

Places are just pieces of information; we will use tokens to link this information
to the memory state. To do that, we introduce the concept of ghost cell families.
The high-level idea is that the token will contain a 1/2 fraction of a ghost cell
that contains the progress of the I/O thread, and an invariant will contain the
other 1/2 fraction. The invariant can then link this knowledge with the memory
state. We will fill in the details to make this work and explain the new concepts.

Fractions A fractional permission [7, 8] is an assertion, such as [1/2]30 7→ 40.
This assertion expresses that at address 30 there is value 40, and that the
thread under consideration is not necessarily the only thread that knows this.
Therefore, the thread can read from address 30 and this will return value 40,
but we do not want the thread to write to it because that could violate another
thread’s knowledge that at address 30 is value 40. However, after the other

92 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

thread terminates, the thread that is still alive can write to it, if there is no
third thread that owns a fraction. To track whether another thread owns a
fraction, we use the fraction size, which is 1/2 in the example of the assertion
[1/2]30 7→ 40. If the fraction size is one, then there is only one thread that has a
fraction (namely of size one) and it can write to it. If it is less than one, there
might be another thread that has a fraction. Let’s illustrate fractions with an
example:

{
emp

}
let x := cons(7) in{

[1]x 7→ 7
}

Ê{
[1/2]x 7→ 7 ∗ [1/2]x 7→ 7

}
Ë({

[1/2]x 7→ 7
}

[x]
{

[1/2]x 7→ _
}

Ì

| |{
[1/2]x 7→ 7

}
[x]

{
[1/2]x 7→ 7

}
Ì)

;{
[1/2]x 7→ _ ∗ [1/2]x 7→ 7

}{
[1]x 7→ 7

}
Í

[x] := 9 Î{
[1]x 7→ 9

}
In this example, after allocating the memory cell we have a fraction of size
one of the memory cell (Ê). We split this fraction into two fractions (Ë). A 1/2
fraction is given to one thread, and the other 1/2 fraction is given to the other
thread, and both threads return a 1/2 fraction (Ì) but one thread specifies the
cell contains 7 ([1/2]x 7→ 7) and the other thread does not specify the contents
of the cell ([1/2]x 7→ _). We can merge these fractions (Í). Since the memory
cell cannot contain both the value 7 and a different value at the same time, we
know its content must be 7. Since we now again have a fraction of size one, we
can write to it (Î).

In case the fraction size is one, we usually do not write the fraction size. For
example the assertion [1]x 7→ 7 can be written as x 7→ 7.

Ghost cell families Ghost cells are like regular heap cells, except they only
serve verification. They also are not identified by an address, but by a pair of

CONCURRENCY 93

an ID and a name/key. To create such an ID, one can use the ghost command
create_gcf:

{
emp

}
let id := create_gcf() in{

gcf(id, 〈〉)
}

gcf(id, 〈〉) expresses that the ghost cell family with the ID id exists, and that
the empty list of keys is in use. Keeping track of the list of used keys allows
one to prevent creating two cells with the same key and ID.

Once the ID is created, one can create the cells:

{
gcf(id, 〈〉)

}
gcf_cons(id, “somekey”, “somevalue”);{

gcf(id, 〈“somekey”〉) ∗ gc(id, “somekey”, “somevalue”)
}

gcf_cons(id, “answer”, 42){
gcf(id, 〈“somekey”, “answer”〉)
∗ gc(id, “somekey”, “somevalue”) ∗ gc(id, “answer”, 42)

}

A heap can contain ghost cells, i.e. gc(vid , vkey, vval) is the heap chunk that is
the ghost cell with ID vid , key vkey and value vval .

When you have a full fraction (i.e. fraction size 1) of such a cell, you can write
to it:

{
gc(id, “somekey”, “somevalue”)

}
(id, “somekey”) := 12{

gc(id, “somekey”, 12)
}

Ghost code create_gcf() and gcf_cons(. . .) are pieces of ghost code: we
treat it like regular code during verification, but we can remove it to execute
the program. One could say ghost code is not actually part of the program; it
is just there in order to verify the program.

So there are two kinds of code: real code, and ghost code. It is important that
real code does not use return values from ghost code since the ghost code should

94 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

be removable prior to executing the program. In order to deal with this, we
mark variables as ghost variables or real variables by using superscript r or g:
xr is a real variable and yg is a ghost variable. When writing a variable name
without marking it as real or ghost, such as x, it is still either real or ghost, we
just did not specify whether it was real or ghost.

So in the following example id is a ghost variable:

let idg := create_gcf() in c

Besides marking variables as real or ghost, we also mark code as real or ghost.
This works as follows: ghost code cannot contain real code, but real code can
contain ghost code. The whole program itself is always considered real code. So
the only way to have ghost code, is to embed it into real code. The only way to
embed ghost code is by using the let syntax with a ghost variable. For example
let vg := c1 in c2 embeds c1 as ghost code.

The rules mentioned above (ghost code cannot contain real code, and real
code cannot mention ghost variables) are not enforced by the syntax of the
programming language, and must be checked separately. Sec. 4.7 explains how
such rules are checked and how to safely remove the ghost code.

Atomic spaces We use assertions of the form [π] P , where π is a fraction size
and P is another assertion. Such an assertion [π] P expresses that P holds
and is called an atomic space. Atomic spaces are similar to shared regions [19]
and Iris’ invariants [38]. An atomic space assertion expresses that on the one
hand you can rely on the fact that P holds, and on the other hand you have
to make sure it keeps holding. This is useful in a multithreaded environment:
multiple threads can have a fraction of P , so each of these threads knows P
holds. A thread should not make modifications to the heap chunks that are
covered by P that would stop P from holding, because other threads rely on
their assumption that P keeps holding.

The ghost command atintro creates an atomic space chunk P . Executing
this command revokes permission (from a verification point of view) to access
the part of the heap covered by P . That part of the heap is only accessible in
an atomic command 〈c〉. When fractions of P are given to different threads,
the assertion P is then the same for each thread: one can not convert [π] P
into [π] P ′ when P is not the same as P ′, even if for the current heap both P
and P ′ hold.

CONCURRENCY 95

The ghost command atdel removes an atomic space chunk. This (from a
verification point of view) gives back access to the part of the heap covered by
P .

Token A property of fractions of (ghost) cells is that given [π1]gcf(id, k, v1)
and [π2]gcf(id, k, v2), we know v1 = v2. We use this as follows. A token has a
1/2 fraction of a ghost cell with as key the I/O thread and as value the progress.
An invariant contains the other 1/2 fraction.

We also let a token contain its parent token(s) such that given a token, we also
know the progresses of the parents and their parents and so on. For an I/O
thread that is the result of a join, the token contains the tokens of both parents.
For an I/O thread that is the result of a split, a 1/2 fraction of the parent token
is contained and the sibling contains the other 1/2 fraction.

We define token as follows:

predicate token_rec = rec token_rec(t).
[1/2]gc(t.id, t.iot, t.progress)
∗ if is_left(t.iot) ∨ is_right(t.iot) then [1/2]token_rec(t.parent1)
else if is_join(t.iot) then token_rec(t.parent1)

∗ token_rec(t.parent2)
else emp

predicate token = λb, t.
[t.iot.f] buffer_invar(t.id, b)
∗ token_rec(t)

Note that token_rec is a recursive predicate. We use the syntactic sugar
rec p(x). P for λx. r(r, x) where r = λr, x. P [r(r, z)/p(z)].

To make this definition of token work, a place also contains the ID (of the ghost
cell family). This ID is the last argument of the place constructor:

place ::= none | place(iot, v, place, place, vid)

token contains a certain fraction size of buffer_invar(. . .) . This fraction size

is defined in such a way that buffer_invar(. . .) is shared over all tokens. For
an initial token, the fraction size is 1. If that token is split in two, then both
have fraction size 1/2. If they are joined, the token that is the result of the

96 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

join has fraction size 1 of the buffer again. The notation iot.f calculates such a
fraction size and is defined inductively as follows:

init.f = 1
left(iot).f = iot.f/2

right(iot).f = iot.f/2
join(iot1, iot2).f = iot1.f + iot2.f

The definition of token uses is_left, is_right, and is_join. is_left is defined
as follows: is_left(iot) is true iff there is some iot′ such that iot = left(iot′).
is_right and is_join are defined analogously.

Here is an example invariant for the print_hi example code above (p. 88) that
prints ‘h’ in one thread and ‘i’ in another thread:

predicate buffer_invar = λid, b.
∃l, r, ltodo, rtodo, c.

b 7→ c
∗ [1/2]gc(id, left(init), l) ∗ [1/2]gc(id, right(init), r)
∗ l ++ ltodo = 〈‘h’〉 ∗ r ++ rtodo = 〈‘i’〉
∗ if l 6= 〈〉 ∧ r 6= 〈〉 then c = last(l) ∨ c = last(r)
else if r 6= 〈〉 then c = last(r)
else if l 6= 〈〉 then c = last(l)
else emp

Note how the invariant has knowledge about the progresses, but also knows the
memory representation of the shared resource (b 7→ c). It links the knowledge
about the progresses to the state of the shared resource.

buffer_invar does not contain ghost cells for I/O threads whose progress is
intended to always be 〈〉, such as init and join(left(init), right(init)). While it is
possible to include e.g. [1/2]gc(id, init, 〈〉) in buffer_invar , this is not necessary.
Without, buffer_invar is still strong enough to enforce that the implementation
does not do undesired writes.

4.3.4 Split and join

predicate split_io = λt1, t2, t3.
t2 = place(left(t1.iot), 〈〉, t1,none, t1.id)
∗ [1/2]gc(t2.id, t2.iot, 〈〉)

CONCURRENCY 97

∗ t3 = place(right(t1.iot), 〈〉, t1,none, t1.id)
∗ [1/2]gc(t3.id, t3.iot, 〈〉);

split = λ.{
token(b, t1) ∗ split_io(t1, t2, t3)

}
skip{

token(b, t2) ∗ token(b, t3)
}

split_io(t1, t2, t3) assigns a fixed value to t2 and t3 that only depends on t1.
split_io(t1, t2, t3) also includes a 1/2 fraction of the ghost cell that tracks the
progress of t2, and a 1/2 fraction of the ghost cell for t3. The split function
takes out these 1/2 fractions of the ghost cells and puts them in token(b, t2) and
token(b, t3). Remember that the other 1/2 fraction of the ghost cells are in the
invariant. Also notice that the ghost cells say the progresses for t2 and for t3
are the empty list.

Join is similar:

predicate join_io = λt1, t2, t3.
t3 = place(join(t1.iot, t2.iot), 〈〉, t1, t2, t1.id)
∗ t1.id = t2.id
∗ [1/2]gc(t3.id, t3.iot, 〈〉)

join = λ.{
join_io(t1, t2, t3) ∗ token(b, t1) ∗ token(b, t2)

}
skip{

token(b, t3)
}

4.3.5 I/O actions

Now, in order to have a function that given a token in a precondition returns a
token in the postcondition, this function will either have to call functions that
manipulate tokens, or have to do it itself. Here is an example of the latter. We
look at the implementation first (you can ignore the parameter r for now3):

putchar = λb, c ; r .
3At this point you do not need to understand the parameter r, but we include it in the

examples to have consistent examples. To not explain everything at once, we postpone
explaining the parameter r until p. 100 (Ë).

98 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

〈[b] := c〉

Execution of a command 〈c〉 is atomic: executing 〈c〉 executes the command c
without any interleaving of other threads. In real-world applications one would
use a less course-grained synchronization mechanism such as mutexes, but for
studying the I/O approach this suffices. The nice property of an atomic block
such as 〈[b] := c〉 is that, while performing verification, we can allow it to write
to data protected by atomic spaces, and even violate the assertion of the atomic
space, as long as the invariant holds again when the atomic block ends. For
example, in case of an atomic space [π] P , the atomic block can access the
memory covered by P , can modify it such that P does not hold anymore, but
must make sure P holds again when the atomic block ends. We will use this in
this subsection.

For the specification we would like something like this:

putchar = λb, c ; r .{
token(b, t1) ∗ putchar_io(t1, c, t2, r)

}
〈[b] := c〉{

token(b, t2)
}

For this specification we need to define putchar_io. Here’s what we ideally
would like to have for putchar_io (for now, ignore the line r.“t1” = t1):

predicate putchar_io = λt1, c, t2, r.
r.“t1” = t1
∗ t2 = t1[progress := t1.progress ++ 〈c〉]

It says that t2 has the same parents and I/O thread as t1, but its progress is
longer. The longer progress includes that c now also has been printed.

Sadly, we are running ahead now with this powerful definition and will stick to
a more restricted definition before we learn how to deal with the more powerful
version in Sec. 4.4.

The more restricted version is as follows:

predicate putchar_io = λt1, c, t2, r.
r.“t1” = t1 Ê
∗ t2 = t1[progress := 〈c〉]

CONCURRENCY 99

∗ t1.progress = 〈〉
∗
(
t1.iot = left(init) ∧ c = ‘h’
∨ t1.iot = right(init) ∧ c = ‘i’

)
It is basically the same, except it is tailored to the invariant. This makes it
application-specific because the invariant is application-specific (again, we lift
this restriction in Sec. 4.4).

Now that we know putchar ’s specification and the definitions used in its
specification, we verify it. Here’s a proof outline (a question mark before
a variable variable denotes this is the first occurrence of the variable):

putchar = λb, c ; r . Ë{
token(b, ?t1) ∗ putchar_io(t1, c, ?t2, r)

}{
[t1.iot.f] buffer_invar(t1.id, b) ∗ token_rec(t1)
∗ putchar_io(t1, c, t2, r)

}
〈 {

buffer_invar(t1.id, b) ∗ token_rec(t1)
∗ putchar_io(t1, c, t2, r)

}
// Case t1.iot = left(init) (the other case is analogous)

b 7→ _
∗ gc(t1.id, left(init), 〈〉) ∗ [1/2]gc(t1.id, right(init), ?rg)
∗ t2 = t1[progress := 〈c〉] ∗ c = ‘h’ ∗ t1.iot = left(init) ∗ r.“t1” = t1
∗ rg ++ ?rtodo = 〈‘i’〉
∗ [1/2]token_rec(t1.parent1)

[b] := c;
let _ := (r.“t1”.id, r.“t1”.iot) := c :: 〈〉 in unit Ì b 7→ c
∗ gc(t2.id, left(init), 〈‘h’〉) ∗ [1/2]gc(t2.id, right(init), rg)
∗ [1/2]token_rec(t2.parent1)

{
buffer_invar(t2.id, b)
∗ token_rec(t2)

}
〉{

[t2.iot.f] buffer_invar(t2.id, b) ∗ token_rec(t2)
}

{
token(b, t2)

}

100 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

Informally, the proof outline works as follows. By entering the atomic section,
we “gain access” to the invariant. The invariant contains a 1/2 fraction of the
ghost cell for the progress. The token contains the other 1/2 fraction. So inside
the atomic block we have a full ghost cell (i.e. not a small fraction of the ghost
cell). Note that there is a write to that ghost cell (see Ì), i.e. the progress gets
updated. This allows us to create the new token (which needs a 1/2 fraction
of the ghost cell with the new progress), which we need for the postcondition.
Before leaving the atomic block, the invariant needs to be restored. Luckily
putchar_io was heavily constrained to give us enough knowledge to do this.

In order to write to the ghost cell, the ID of the ghost cell and the key of the
ghost cell must be known. The ID is t1.id, but t1 is a variable in the assertions,
not a variable in the program and the program cannot access it. That is why
the function has an extra argument r (see Ë). This argument is only used for
ghost code. To be able to easily remove such arguments, we separate them from
the real arguments with a semicolon (see Ë). The variable r is a record, and
the definition of putchar_io constrains r to map the key “t1” to the value t1
(see Ê). That is why the code (Ì) uses r.“t1”.id to access the ID to update the
ghost cell.

Besides functions that manipulate tokens themselves, some functions only call
other I/O style functions, like the ones below which are very easy to verify:

print_h = λb ; r .{
token(b, t1) ∗ putchar_io(t1, ‘h’, t2, r)

}
putchar(b, ‘h’ ; r){

token(b, t2)
}

print_i = λb ; r .{
token(b, t1) ∗ putchar_io(t1, ‘i’, t2, r)

}
putchar(b, ‘i’ ; r){

token(b, t2)
}

print_hi = λb ; r . token(b, t1) ∗ split_io(t1, th1, ti1)
∗ putchar_io(th1, ‘h’, th2, r.“h”) ∗ putchar_io(ti1, ‘i’, ti2, r.“i”)
∗ join_io(th2, ti2, t2)

let _ := split() in(
putchar(b, ‘h’ ; r.“h”) || putchar(b, ‘i’ ; r.“i”)

)
;

CONCURRENCY 101

let _ := join() in unit{
token(b, t2)

}
4.3.6 Main

Consider the following implementation and specification:

main = λ.{
emp

}
let b := cons(0) in
print_hi(b);
[b]{

res = ‘h’ ∨ res = ‘i’
}

main allocates a buffer, calls print_hi (which writes to this buffer), and returns
the content of the buffer.

In order to call print_hi, print_hi’s precondition must hold before it is called.
The verification of main will thus have to make sure print_hi’s I/O precondition
holds, even though main does not have an I/O style precondition itself. The
main function also does the inverse: after obtaining the I/O style postcondition
of print_hi, main extracts knowledge about the memory state. It then expresses
such knowledge in its non-I/O style postcondition.

To verify main, we add ghost code to make the precondition of print_hi hold
before it is called, and we add ghost code to be able to “convert” the knowledge
obtained from the I/O style postcondition of print_hi to the non-I/O style
postcondition of main.

main = λ.{
emp

}
let b := cons(0) in
let id := create_gcf() in
let iot1 := init in
let ioth := left(iot1) in
let ioti := right(iot1) in
let iot2 := join(ioth, ioti) in

102 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

let _ := gcf_cons(id, iot1, 〈〉);
gcf_cons(id, ioth, 〈〉);
gcf_cons(id, ioti, 〈〉);
gcf_cons(id, iot2, 〈〉);
atintro in{
gc(id, iot1, 〈〉) ∗ [1/2]gc(id, ioth, 〈〉) ∗ [1/2]gc(id, ioti, 〈〉)
∗ gc(id, iot2, 〈〉) ∗ buffer_invar(id, b)

}
let t1 := place(iot1, 〈〉,none,none, id) in
let th1 := place(ioth, 〈〉, t1,none, id) in
let th2 := place(ioth, 〈‘h’〉, t1,none, id) in
let ti1 := place(ioti, 〈〉, t1,none, id) in
let ti2 := place(ioti, 〈‘i’〉, t1,none, id) in
let t2 := place(iot2, 〈〉, th2, ti2, id) in
let r := {“h” : {“t1” : th1}, “i” : {“t1” : ti1}} in{

token(b, t1) ∗ split_io(t1, th1, ti1) ∗ putchar_io(th1, ‘h’, th2, r.“h”)
∗ putchar_io(ti1, ‘i’, ti2, r.“i”) ∗ join_io(th2, ti2, t2)

}
print_hi(b ; r){

token(b, t2)
}{

token_rec(t2) ∗ buffer_invar(id, b)
}

let _ := atdel in b 7→?c
∗ gc(id, left(init), 〈‘h’〉) ∗ gc(id, right(init), 〈‘i’〉)
∗ (c = ‘h’ ∨ c = ‘i’)

[b]{

res = ‘h’ ∨ res = ‘i’
}

The ghost code that we insert in main creates the ghost cells (create_gcf()
and gcf_cons(. . .)). It also introduces the atomic space: the atintro
ghost code allows one to “convert” the assertion buffer_invar(id, b) into
buffer_invar(id, b) .

CONCURRENCY 103

4.3.7 Formalization: Concurrent programming language

To explain part of the approach for I/O style verification of memory manipulating
programs, we used a programming language that we so far only explained
informally. Before we continue, we define the part of the programming language
used so far more formally.

We define a programming language from scratch, i.e. not an extension of the
previously formally defined language of Chapter 3.

Definition 33: Syntax

Values, ghost levels, expressions, operations, and commands are defined
(in that order) syntactically as follows:

v, t ::= i | i | true | false | unit | λxr; yg. c | ⊥ | {f : v} | iot | place
l ::= g | r
e ::= v | x | op(e)
op ::= + | − | ∗ | = | last | cons | ++ | . . .
c ::= e | let x := c in c | e(e; e) | if e then c else c | c || c | [e] | [e] := e |

cons(e)

A program is a closed command, i.e. a command with no free variables.

i ranges over integers. {f : v} is a record: a partial function from strings to
values.

Operations and expressions Notice that we defined operations syntactically.
So + is just considered a syntactic thing, not a mathematical function.

An expression can consists of an operation application, such as +(1, 1). We often
write operation expressions in infix notation. For example we write 1 + 1 for
the expression +(1, 1). To actually evaluate operation application expressions,
we assume a function called eval:

Definition 34: eval

We assume a function called eval that given an operation and a list of
arguments, returns a value.

104 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

Definition 35: Expression evaluation

Evaluation of a closed expression is defined inductively as follows:

• JvK = v

• Jop(E)K = eval(op, JEK)

Here we write JE1, E2, . . . , EnK for JE1K, JE2K, . . . , JEnK.

We assume eval to be a total function on all values. For nonsense calculations
eval returns the error value (⊥). This is just a value like any other value. For
example J42/0K = ⊥, J1 + trueK = ⊥, Jtail(〈〉)K = ⊥, and J⊥+ 7K = ⊥.

Lambda values Lambda values (λxr; yg. c) have two sets of arguments (xr and
yg). The first set are the real arguments and the second set are ghost arguments.
This distinction will be necessary when we study erasure (Sec. 4.7).

Heap We verify memory behavior in an I/O style, so we do not need a BIO
command for doing input/output, because everything happens in memory.

Heap chunks map addresses to values (we postpone formalizing ghost cell
families until Sec. 4.3.9):

Definition 36: Heap chunks (C ∈ Chunks)

We define heap chunks (also called “chunks”) as follows:

C ::= v 7→ v

We write Chunks for the set of all heap chunks.

A heap maps a chunk to a fraction:

Definition 37: Heap (h ∈ Heaps)

Heaps = Chunks→ Q+

We range over Heaps with h.

CONCURRENCY 105

τ ∈ τ1 || τ2
ParLeft

(h, h̃) · τ ∈ ((h, h̃) · τ1) || τ2

τ ∈ τ1 || τ2
ParRight

(h, h̃) · τ ∈ τ1 || ((h, h̃) · τ2)

ParEmpty
ε ∈ ε || ε

Figure 4.2: Parallel composition (used in Fig. 4.3 on the following page)

So Heaps is the set of all heaps, ranged over by h. We write heaps like
{[[1/2]4 7→ 5, 6 7→ 7]}, which means that the heap maps the chunk 4 7→ 5 to the
fraction 1/2, the chunk 6 7→ 7 to the fraction 1, and all other chunks to fraction
0.

Program evaluation A program can be an expression like 1 + 1. The program
1 + 1 should evaluate to 2. Let us look now how this is defined more formally.
The semantics of the programming language is defined in a big step style: we
write c ⇓ τ, v to express that an execution of the command c can yield the
return value v (ignore τ for now).

Definition 38: Step semantics (c ⇓ τ, v)

Execution of a command (i.e. the step semantics) is defined coinductively
in Fig. 4.3 on the next page.

We will extend the definition of execution of a command later (Fig. 4.7 p. 114,
Fig. 4.9 p. 116, Fig. 4.13 p. 140) to add more features. Let us look at the Exp
step rule. It states that a command of the form e evaluates to ε, JeK. (again,
ignore ε for now). For example, 1 + 1 ⇓ ε, 2. In other words: the program 1 + 1
can evaluate to ε, 2.

Note that we wrote “can evaluate” instead of “will evaluate”: the programming
language is not deterministic, so in some cases it is possible there are multiple
executions of a program, each returning a different value. In other words, it is
possible that c ⇓ τ1, v1 and c ⇓ τ2, v2 where v1 6= v2.

This nondeterminism is the case for memory allocation (which can yield a
different memory address allocated) and parallel execution (which can have
multiple interleavings). But how can one define a big step semantics that

106 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

c1 ⇓ τ1,_ c2 ⇓ τ2,_ τ ∈ τ1 || τ2
Par

c1 || c2 ⇓ τ,unit

c1 ⇓ τ1, v1 c2[v1/x] ⇓ τ2, v2
Let

let x := c1 in c2 ⇓ τ1; τ2, v2

Mut
[v1] := v2 ⇓ (h] {[v1 7→ _]}, h] {[v1 7→ v2]}) · ε,unit

@v′.h(v1 7→ v′) ≥ 1
MutErr

[v1] := v2 ⇓ (h,⊥) · ε,⊥

c[v1/x][v2/y] ⇓ τ, v
App

(λx; y. c)(v1; v2) ⇓ (h, h) · τ, v

@x, y, c. v = λx; y. c
AppErr

v(v1; v2) ⇓ (h,⊥) · ε,⊥

c1 ⇓ τ, v
Then

if true then c1 else c2 ⇓ τ, v

v 6= true c2 ⇓ τ, v′
Else

if v then c1 else c2 ⇓ τ, v′
Exp

e ⇓ ε, JeK

h(v 7→ v′) > 0
Lookup

[v] ⇓ (h, h) · ε, v′
@v′.h(v 7→ v′) > 0

LookupErr
[v] ⇓ (h,⊥) · ε,⊥

h′ = {[n 7→ v0, n+ 1 7→ v1, . . . , n+ k 7→ vk]}
Cons

cons(v0, v1, . . . , vk) ⇓ (h, h] h′) · ε, n

Figure 4.3: Step semantics. We identify closed expressions with their values.

CONCURRENCY 107

associates a command with the final result in such a concurrent setting? To deal
with this, we use traces of pairs of heaps4, somewhat similar to [70]. Formally,
this is defined as follows:

Definition 39: Traces (τ)

h̃ ::= h | ⊥ | inf
τ ::= ε | (h, h̃) · τ

Here, the definition of τ must be interpreted coinductively. To understand this
definition, we start with the following example of a trace:

({[1 7→ 2]}, {[1 7→ 7]}) · ({[1 7→ 7]}, {[1 7→ 7, 3 7→ 4]}) · ε.

This trace expresses that the program starts with the heap {[1 7→ 2]}. The first
pair in the trace expresses that the run of the program transforms the heap by
writing 7 to address 1. The second pair of heaps says memory is allocated at
address 3 with content 4.

In the example trace, the last item of a pair equals the first item of the next
pair. This must be the case when the trace represents all heap modifications
of all threads of a program. But the power of the trace semantics is that we
can also consider a subset of the set of threads of a program by studying traces
where the last item of a pair does not equal the first item of the next pair. It is
possible another thread did something between the second item of a pair and
the first item of the next pair. Consider this example:

τ1 = ({[1 7→ 2]}, {[1 7→ 7]}) · ({[1 7→ 10]}, {[1 7→ 15, 3 7→ 4]}) · ε.

We see that between {[1 7→ 7]} and {[1 7→ 10]}, another thread must have written
10 to address 1. Note that many other things might have happened in between,
maybe yet another thread allocated something and then deallocated that.

Let us look at the Cons step rule of the step semantics. It uses the] operation:
h1] h2 yields the heap that has all elements of both h1 and h2, if h1 and h2
do not have a conflicting opinion on which address is mapped to which value.
More formally:

Definition 40: agree(C,C)

agree(v1 7→ v2, v
′
1 7→ v′2) = v1 6= v′1 ∨ v2 = v′2

4and of ⊥ and inf

108 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

Definition 41: Sum of heaps (h] h)

h1] h2 = if ∀C1 ∈ h1, C2 ∈ h2.agree(C1, C2) then (λC.h1(C) + h2(C))
else undefined

Going back to the Cons step rule, the step rule states that execution of a
memory allocation yields a trace of only one pair of heaps, where the second
item of the pair adds the newly allocated memory.

Now we look at the Let step rule. It states that, if c1 yields trace τ1 and c2
yields trace τ2, then executing c2 after c1 yields τ1; τ2.

You can think of τ1; τ2 as just adding τ2 after τ1. In case τ1 is infinite, τ1; τ2 is
equal to τ1. More formally:

Definition 42: Sequential composition of traces (τ ; τ)

We define τ1; τ2 corecursively as follows

((h, h̃) · τ); τ ′ = (h, h̃) · (τ ; τ ′)
ε; τ = τ

The Par step rule describes parallel composition: the command c1||c2 executes
c1 in parallel with c2. The step rule states that if c1 evaluates to a trace τ1,
and c2 evaluates to a trace τ2, then take one of the potentially many traces that
are an interleaving of τ1 with τ2, and c1||c2 will evaluate to that trace. It will
probably also evaluate to other traces.

Definition 43: Parallel composition of traces (τ ∈ τ || τ)

When a trace is an interleaving of two other traces is defined coinductively
in Fig. 4.2 on page 105.

Remember that in a trace, it is possible that the last item of a pair of the
trace does not equal the first item of the next pair. In case we are looking
at the traces produced by a full program – so no other threads are executed
concurrently with it – this will not be the case. For the full program, we ignore
such traces because they cannot happen. To do that, we use the concept of an
outcome.

CONCURRENCY 109

h, (h,⊥) · τ → (0,⊥)
h2, τ → O

h1, (h1, h2) · τ → O + 1 h, ε→ (0, h)

h, inf · τ → inf

Figure 4.4: Outcomes

Definition 44: Outcomes (O)

Outcomes are defined inductively as follows:

O ::= (n, h) | (n,⊥) | inf

The first outcome, (n, h), states the execution terminates with heap h after n
steps. The second outcome, (n,⊥) states the execution crashes after n (non-
crashing) steps. The third outcome, inf, states the execution goes into an
infinite loop.

Given a heap with which the program starts and a trace of an execution of the
program, we associate an outcome with it.

Definition 45: Outcome increase (O + 1)

We define increasing an outcome (written O + 1) as follows:

• (n, h) + 1 = (n+ 1, h)

• (n,⊥) + 1 = (n+ 1,⊥)

• inf + 1 = inf

Definition 46: Outcome of a trace (h, τ → O))

With a trace and a startheap, we associate an outcome, as defined
coinductively in Fig. 4.4. It uses Def. 45.

110 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

h = h1] h2 h1 �F P1 h2 �F P2 Sep
h �F P1 ∗ P2

Chunk
{[[π]C]} �F [π]C

(h �F P1) ∨ (h �F P2)
Or

h �F P1 ∨ P2

h �F [π]P [v/x]
Exists

h �F [π]∃x.P
JeK = true

Exp
{[]} �F [π]e

h �F [π]P1 ∗ [π]P2 PiStar
h �F [π](P1 ∗ P2)

h �F [π]P1 ∨ [π]P2 PiOr
h �F [π](P1 ∨ P2)

h �F [π]P [v/x] fv(P) ⊆ x
Pred

h �F [π](λx. P)(v)
h �F [π1 × π2]P

NestFrac
h �F [π1][π2]P

Figure 4.5: Satisfaction relation of assertions. We identify closed expressions
with their values.

Because n ∈ N, we know (n, h) and (n,⊥) never describe an infinite execution.

Assertions and proof rules We extend values with predicate values:

Definition 47: Values extended with predicate values

v ::= . . . | λx. P

An assertion can be an expression, a separating conjuction, a points-to assertion,
a disjunction, an existential quantification, an operation, a fractional assertion
[7, 8], or a predicate value application (similar to [54] besides that we allow
predicates to be values).

CONCURRENCY 111

Definition 48: Assertions (P,Q)

Assertions are defined syntactically as follows:

P,Q ::= e | P ∗ P | e 7→ e | P ∨ P | ∃x.P | [π]P | e(e)

emp is a shorthand for the assertion true.

A heap can be a model for a closed assertion.

Definition 49: Satisfaction relation of assertions (h �F P)

Fig. 4.5 on the preceding page defines inductively when a heap is a model
for an assertion.

The subscript (F in h �F P) can be ignored for now; it will be important when
we study higher order functions (Sec. 4.4.6).

Definition 50: Proof rules (`
{
P
}
c
{
Q
}l
I
)

Proof rules are defined inductively in Fig. 4.6 on the following page.

Each rule with conclusion `
{
P
}
c
{
Q
}l
I
has an implicit side condition

fv(P) = ∅ and fv(Q) ⊆ {res}.

One can ignore the subscript and superscript (l and I in `
{
P
}
c
{
Q
}l
I
) for now,

they will be important when we study atomic commands (Sec. 4.3.8 p. 115),
higher order functions (Sec. 4.4.6), and erasure (Sec. 4.7).

The Conseq proof rule uses P → Q, which expresses that “P implies Q”. More
formally:

Definition 51: P → Q

P → Q ⇐⇒ ∀h, F. h �F P ⇒ h �F Q

112 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

`
{
P
}
c
{
Q ∗R

}l
I Leak

`
{
P
}
c
{
Q
}l
I

`
{
P
}
c1
{
Q
}l
I Then

`
{
P
}
if true then c1 else c2

{
Q
}l
I

`
{
P
}
c2
{
Q
}l
I

v 6= true
Else

`
{
P
}
if v then c1 else c2

{
Q
}l
I

JeK = v
Exp

`
{
emp

}
e
{

res = v
}l
I

`
{
P
}
c[v1/xr][v2/yg]

{
Q
}l
I AppSimple

`
{
P
}

(λxr; yg. c)(v1; v2)
{
Q
}l
I

False
`
{

false
}
c
{
Q
}l
I

Mut
`
{
v 7→ _

}
[v] := v′

{
v 7→ v′

}r
I

∀v. `
{
P [v/x]

}
c
{
Q
}l
I Exists

`
{
∃x.P

}
c
{
Q
}l
I

`
{
P1
}
c
{
Q
}l
I
`
{
P2
}
c
{
Q
}l
I Disj

`
{
P1 ∨ P2

}
c
{
Q
}l
I

`
{
P
}
c
{
Q
}l
I

fv(R) = ∅
Frame

`
{
P ∗R

}
c
{
Q ∗R

}l
I

P → P ′ `
{
P ′
}
c
{
Q′
}l
I

Q′ → Q
Conseq

`
{
P
}
c
{
Q
}l
I

`
{
P
}
c1
{
Q′
}r
I
∀v. `

{
Q′[v/res]

}
c2[v/xr]

{
Q
}r
I LetR

`
{
P
}
let xr := c1 in c2

{
Q
}r
I

`
{
P
}
c1
{
Q′
}g
I
∀v. `

{
Q′[v/res]

}
c2[v/xg]

{
Q
}l
I LetG

`
{
P
}
let xg := c1 in c2

{
Q
}l
I

Lookup
`
{

[π]v 7→ v′
}

[v]
{

res = v′ ∗ [π]v 7→ v′
}l
I

v = v0, v1, . . . , vk Cons
`
{
emp

}
cons(v)

{
res 7→ v0 ∗ res + 1 7→ v1 ∗ . . . ∗ res + k 7→ vk

}r
I

`
{
P1
}
c1
{
Q1
}l
I
`
{
P2
}
c2
{
Q2
}l
I

fv(Q1) = fv(Q2) = ∅
Par

`
{
P1 ∗ P2

}
c1 || c2

{
Q1 ∗Q2

}l
I

Figure 4.6: Proof rules

CONCURRENCY 113

4.3.8 Formalization: Atomic blocks

In this subsection we formalize atomic blocks (which were introduced informally
in Sec. 4.3.5 on page 98) and atomic spaces (which were introduced informally
in Sec. 4.3.3 on page 94).

We extend the syntax with atomic blocks:

Definition 52: Commands ext. with atomic block command

c ::= . . . | 〈c〉

Remember that an atomic block is executed atomic, i.e. no other thread will do
anything while the atomic block is being executed. As a result, when executing
an atomic block, one can be sure that no other thread will manipulate the heap.

Remember that an atomic space assertion is an assertion of the form [π] P ,
where P is another assertion and π is a fraction size. As long as we know that
[π] P holds, we know that P is true. For example, if we have the assertion
[π] ∃x. 7 7→ x ∗ x > 10 , we know that, at every point in the execution of the
program, the address 7 will contain a value that is greater than 10.

Now we combine the concept of an atomic block with the concept of an atomic
space assertion. The sub-assertion P of the atomic space assertion must hold
before executing the atomic block, and after the atomic block terminates. It is
fine to invalidate P during execution of the atomic block, as long as P holds
again when the atomic block ends. For example, with the atomic space assertion
[π] ∃x.7 7→ x ∗ x > 10 it is fine to have a program 〈[7] := 2; [7] := 11〉.

We add a command to introduce an atomic space, and another command to
delete an atomic space:

Definition 53: Commands ext. with atomic space commands

c ::= . . . | atintro | atdel

We add a special type of heap chunk, called an atomic space chunk:

Definition 54: Chunks extended with atomic space chunk

C ::= . . . | P

114 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

c ⇓ τ, v h1, τ → (n, h2)
Atom

〈c〉 ⇓ (h1, h2) · ε, v

c ⇓ τ, v h, τ → (n,⊥)
AtomErr

〈c〉 ⇓ (h,⊥) · ε, v

c ⇓ τ, v h, τ → inf
AtomInf

〈c〉 ⇓ (h, inf) · ε,unit
AtomIntro

atintro ⇓ (h, h) · ε, unit

AtomDel
atdel ⇓ (h, h) · ε,unit

Figure 4.7: Step semantics for atomic blocks

`
{
P ∗ P1 ∗ . . . ∗ Pk

}
c
{
Q ∗ P1 ∗ . . . ∗ Pk

}l
inat ∀i, j. i 6= j ⇒ Pi 6= Pj

Atom
`
{
P ∗ [π1] P1 ∗ . . . ∗ [πk] Pk

}
〈c〉
{
Q ∗ [π1] P1 ∗ . . . ∗ [πk] Pk

}l
outat

AtIntro
`
{
P
}
atintro

{
P
}g

outat

AtDel
`
{
P
}
atdel

{
P
}g

outat

Figure 4.8: Proof rules for atomic blocks

We add a corresponding atomic space chunk assertion:

Definition 55: Asn. ext. with atomic space chunk assertion

P ::= . . . | P

The command atintro does not actually do something while executing the
program: the heap before the command is the same as the heap after it. This is
reflected in the AtomIntro step rule in Fig. 4.7. Now switch from the concrete
execution point of view to the verification point of view: the AtIntro proof
rule in Fig. 4.8 states that, if one has access to some memory described by an
assertion P before executing atintro, we lose this access (in the postcondition),
but gain the knowledge that there exists an atomic space with assertion P .

CONCURRENCY 115

So a heap chunk of the form P is only used for verification; during concrete
execution it will never exist.

Definition 56: Program execution extended for atomic blocks

Fig. 4.7 on the preceding page extends the step semantics for atomic
blocks.

The AtomErr step rule states that, if a command c evaluates to a trace, and this
trace crashes (according to the definition of outcomes), then 〈c〉 also crashes.

Similarly, AtomInf states that if c goes into an infinite loop, then 〈c〉 also goes
into an infinite loop.

The Atom step rule says that if c evaluates to a trace τ , and starting from
heap h1 the trace τ ends in n steps with heap h2 without crashing (or formally:
h1, τ → (n, h2)) then 〈c〉 yields a trace of only one step: (h1, h2). For example,
if executing c yields a very long trace (h1, ha) · (ha, hb) · . . . · (hz, h2) · ε , then
executing 〈c〉 yields the short trace (h1, h2) · ε. Note that for the long trace
τ , because of the definition of outcomes, we only consider traces for which
every second item of a tuple of the trace equals the first item of the next tuple.
So we do not consider τ = (h1, ha) · (hb, h2) · ε when ha 6= hb, because then
h1, τ → (n, h2) will not hold.

Also remember that execution is not deterministic: it is possible that both the
Atom and the AtomErr step rule are applicable.

The Atom proof rule states that, in order to prove 〈c〉 with a precondition
and a postcondition, it suffices to prove c instead. Additionally, while proving
c, one can access the part of the heap “covered” by the atomic space of the
precondition, as long as they still hold in the postcondition. To avoid gaining
access twice to resources covered by atomic spaces, we disallow using this proof
rule to prove the premise of the proof rule. This has the limitation one cannot
nest atomic blocks (〈〈c〉〉), but we haven’t needed this in the examples we
considered. Gaining access twice to resources covered by an atomic space is
prevented by annotating Hoare triples with whether they are considered inside
or outside an atomic block:

{
P
}
c
{
Q
}l

outat denotes we are outside an atomic
block,

{
P
}
c
{
Q
}l

inat denotes we are inside. I is used to range over {inat, outat}.

Note that the Atom proof rule only requires a fraction of the atomic space
(i.e. the precondition contains [π] P instead of P): this way one can spread
fractions of atomic spaces over threads, and each thread can still access the
resources covered by the atomic spaces in its atomic blocks.

116 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

gcf(v,_) /∈ h

create_gcf() ⇓ (h, h] {[gcf(v, 〈〉)]}) · ε, v

vkey /∈ v h′ = h] {[gcf(vid, vkey :: v),gc(vid, vkey, v)]}

gcf_cons(vid, vkey, v) ⇓ (h] {[gcf(vid, v)]}, h′) · ε, unit

(vid, vkey) := v ⇓ (h] {[gc(vid, vkey,_)]}, h] {[gc(vid, vkey, v)]}) · τ, v

gc(vid, vkey,_) /∈ h

(vid, vkey) := v ⇓ (h,⊥) · ε,⊥

Figure 4.9: Ghost cell families step semantics

The atdel command, just like atintro, does not modify the heap while being
executed. Now switch to the verification point of view (see AtDel rule in Fig. 4.8
on page 114): when one has access to knowledge that an atomic space exists
(and this knowledge is not a fraction), i.e. when one has P , one can swap this
with access to the memory covered by P .

Definition 57: Proof rules extended for atomics

Fig. 4.8 on page 114 extends the proof rules for atomic blocks, atintro,
and atdel.

4.3.9 Formalization: Ghost cell families

In this subsection we formalize ghost cell families. Ghost cell families were
informally explained in Sec. 4.3.3.

We add heap chunks for ghost cell families and ghost cells:

Definition 58: Heap chunks extended for ghost cell families

C ::= . . . | gcf(v, v) | gc(v, v, v)

CONCURRENCY 117

CreateGcf
`
{
emp

}
create_gcf()

{
gcf(res, 〈〉)

}g
I

vkey /∈ v
GcfCons

`
{
gcf(vid, v)

}
gcf_cons(vid, vkey, v)

{
gcf(vid, vkey :: v)
∗ gc(vid, vkey, v)

}g

I

GcfMut
`
{
gc(vid, vkey,_)

}
(vid, vkey) := v

{
gc(vid, vkey, v)

}g
I

Figure 4.10: Ghost cell families proof rules

We add the corresponding assertions:

Definition 59: Assertions extended for ghost cell families

P ::= . . . | gcf(e, e) | gc(e, e, e)

Definition 60: Commands extended for ghost cell families

c ::= . . . | create_gcf() | gcf_cons(e, e, e) | (e, e) := e

Definition 61: Step rules extended for ghost cell families

Step rules for ghost cell families are listed in Fig. 4.9 on the facing page.

Definition 62: Proof rules extended for ghost cell families

Proof rules for ghost cell families are in Fig. 4.10.

The examples in this thesis only write to ghost cells but do not read from it.
So we only include a command to write to a ghost cell ((e, e) := e) and not one
to read from a ghost cell, but it easy to add such a command.

118 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

4.4 Reusability

In the previous examples, the proof of putchar is not reusable across applications.
The verification of putchar uses knowledge of how buffer_invar is defined, but
part of the definition of buffer_invar is application-specific. The application-
specific part consists of a 1/2 fraction of the ghost cells for the progresses, and
how these progresses are related to each other and to the buffer content. This
part is indeed application-specific: a different application can have a different
Petri net and therefore different I/O threads and different progresses. The
progresses can be related differently to each other and to the buffer content.

Ideally, we would like to write a specification for putchar and verify it once and
for all, and then reuse it in multiple programs that have different specifications
and therefore also different progresses and relationships between them.

We solve this problem by doing three things.

First, we move the application-specific part of buffer_invar to a user-defined
predicate called the I/O invariant, which is passed as an extra argument to
buffer_invar :

predicate buffer_invar = λid, io_inv, b.
∃v.

buf (b, v)
∗ io_inv(id, v)

Here, buf (b, v) is the memory state, such as b 7→ v (i.e. at address b is value v).

We change the definition of token such that it passes the I/O invariant to
buffer_invar as an argument. token itself extracts the I/O invariant from the
place.

predicate token = λb, t.
[t.iot.f] buffer_invar(t.id, t.invar, b)
∗ token_rec(t)

split, join, token_rec, and buffer remain unchanged.

Second, we put the I/O invariant in the place: it is the one but last argument
of the place constructor:

place ::= none | place(iot, v, place, place, λid. P , vid)

REUSABILITY 119

This argument is an assertion lambda.

Because the place constructor now has an extra argument, we have to update
the definition of split_io and join_io because they use this constructor:

predicate split_io = λt1, t2, t3.
t2 = place(left(t1.iot), 〈〉, t1,none, t1.invar, t1.id)
∗ [1/2]gc(t2.id, t2.iot, 〈〉)
∗ t3 = place(right(t1.iot), 〈〉, t1,none, t1.invar, t1.id)
∗ [1/2]gc(t3.id, t3.iot, 〈〉);

predicate join_io = λt1, t2, t3.
t3 = place(join(t1.iot, t2.iot), 〈〉, t1, t2, t1.invar, t1.id)
∗ t1.id = t2.id ∧ t1.invar = t2.invar
∗ [1/2]gc(t3.id, t3.iot, 〈〉)

Third, because putchar cannot otherwise update the resources covered by the
I/O invariant, i.e. prove that the I/O invariant still holds after performing
the I/O action, a proof that the I/O invariant still holds after the I/O action
is shipped in the I/O action putchar_io. This is easier to understand with
an example, which we will do in the next subsections. Because we want to
illustrate reusability, the example is split up into multiple smaller examples,
each one reusable, and each one using the previous one, if any. We define a
reusable buffer (without I/O style specifications) (Sec. 4.4.1), then on top of
that we define a reusable putchar (with I/O style specifications) (Sec. 4.4.2), on
top of that a reusable print_hi (Sec. 4.4.3), and on top of that a main function
with non-I/O style specification that calls print_hi with I/O style specification
(Sec. 4.4.5).

4.4.1 Example: Reusable buffer without I/O

We define a simple buffer (in non-I/O style) so that we can build an I/O style
putchar on top of it. To define the simple buffer, we define a predicate to
represent the memory footprint of the buffer. We also define functions to create,
write to, read from, and dispose (free) a buffer.

predicate buf = λb, v. b 7→ v

create_buf = λ.
{
emp

}
cons(0)

{
buf (res, 0)

}

120 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

buf_write = λb, v.
{

buf (b,_)
}

[b] := v
{

buf (b, v)
}

buf_read = λb.
{

buf (b, v)
}

[b]
{

buf (b, v) ∗ res = v
}

4.4.2 Example: Reusable putchar

Remember that the approach has an I/O invariant, which is defined by the user
of putchar .

The implementation of putchar will have to update the resources covered by the
I/O invariant, but it is not fixed what this I/O invariant is. In the old approach,
putchar ’s verification proved that the I/O invariant still holds after the I/O
action by replacing the I/O invariant with its definition. This old approach will
not work anymore since it’s unknown what the definition of the I/O invariant
is. The solution we use is to let the user of putchar provide a proof that this
I/O action is allowed by the I/O invariant. This proof is “shipped” in the I/O
action as a function value with a specification (see Î below). putchar then calls
(Ï) this function value. We call such function values updater function values,
or simply updater functions.

The precondition of the updater function value (Î) contains:

• The I/O invariant, which typically contains a 1/2 fraction of the ghost cells
that track the progresses of the I/O threads, including the I/O thread of
the place under consideration (t1). The I/O invariant has the memory
representation as an argument.

• token_rec(t1), which contains the other 1/2 fraction of the ghost cell that
tracks the progress of the I/O thread of t1. token_rec(t1) also contains the
knowledge that the content of this ghost cell equals the progress encoded
in t1.

The postcondition of the updater function value contains:

• Again the I/O invariant, but this time the value that is the memory
representation after applying the I/O action is used as argument for the
memory representation. For this I/O action that writes to a one-cell
buffer, this is just the value written (c).

• token_rec(t2).

REUSABILITY 121

So the updater function has access to the full (i.e. fraction size one) ghost cell
that tracks the progress, and must update it from the progress encoded in t1
to the progress encoded in t2. The updater function must not only update the
ghost cell but also show that the I/O invariant holds after doing so, for the new
memory representation that is an argument of the I/O invariant.

The reason the precondition and postcondition of the updater function value uses
token_rec instead of just passing the ghost cell ([1/2]gc(t1.id, t1.iot, t1.progress))
is because the updater function value might need knowledge of progresses of
previous I/O threads.

predicate putchar_io = λt1, c, t2, r.
t2 = t1[progress := t1.progress ++ 〈c〉]
∗ r.“t1” = t1

∗
{

t1.invar(t1.id,_) ∗ token_rec(t1)
}

r.“update_fun”() Î{
t2.invar(t2.id, c) ∗ token_rec(t2)

}
putchar = λb, c ; r .{

token(b, ?t1) ∗ putchar_io(t1, c, ?t2, r)
}{

token_rec(t1) ∗ [t1.iot.f] buffer_invar(t1.id, t1.invar, b)
∗ putchar_io(t1, c, t2, r)

}
〈

token_rec(t1) ∗ buf (b, ?v) ∗ t1.invar(t1.id, v)
∗ r.“t1” = t1 ∗ t2 = t1[progress := t1.progress ++ 〈c〉]
∗
{
t1.invar(t1.id,_) ∗ token_rec(t1)

}
r.“update_fun”(){
t2.invar(t2.id, c) ∗ token_rec(t2)

}

buf_write(b, c);
let _g := r.“update_fun”() in unit Ï{

token_rec(t2) ∗ buf (b, c) ∗ t2.invar(t2.id, c)
}

〉{
token_rec(t2) ∗ [t2.iot.f] buffer_invar(t2.id, t2.invar, b)

}
{

token(b, t2)
}

122 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

4.4.3 Example: Reusable print_hi with I/O style specifica-
tions

The following functions can simply be verified by using the specifications of the
functions they call. They do not have to take into account whether the callees
are implemented in-memory or not.

print_h = λb ; r .{
token(b, t1) ∗ putchar_io(t1, ‘h’, t2, r)

}
putchar(b, ‘h’ ; r){

token(b, t2)
}

print_i = λb ; r .{
token(b, t1) ∗ putchar_io(t1, ‘i’, t2, r)

}
putchar(b, ‘i’ ; r){

token(b, t2)
}

predicate print_hi_io = λt1, t2, r.
∃th1, ti1, th2, ti2.

split_io(t1, th1, ti1)
∗ putchar_io(th1, ‘h’, th2, r.“h”)
∗ putchar_io(ti1, ‘i’, ti2, r.“i”)
∗ join_io(th2, ti2, t2)

print_hi = λb ; r .{
token(b, t1) ∗ print_hi_io(t1, t2, r)

}
let _g := split() in

(print_h(b ; r.“h”) | | print_i(b ; r.“i”));

let _g := join() in unit{
token(b, t2)

}
4.4.4 Example: main specification without I/O style spec

Consider the following specification of the main function.{
emp

}

REUSABILITY 123

main(){
res = ‘h’ ∨ res = ‘i’

}
In the next section, we show how one can verify an implementation for this
specification that calls the reusable function with I/O style specifications.

4.4.5 Example: main implementation calling I/O style speci-
fied functions

Multiple implementations for the main function are possible. In this section we
focus on the following one:

main = λ.{
emp

}
let b := create_buf () in
print_hi(b);
buf_read(b){

res = ‘h’ ∨ res = ‘i’
}

The main difference from the implementation in the non-reusable setting is that
main now calls the reusable version of print_hi.

When verifying the main function, we have an extra responsibility: we have to
define the I/O invariant. Furthermore, we have to define the updater functions
(Ð and Ñ) that provide the proof that the I/O actions preserve the I/O invariant.

In this example, the I/O invariant states the progress of the left I/O thread is
〈‘h’〉 or the empty list, and the progress of the right I/O thread is 〈‘i’〉 or the
empty list. In other words, one I/O thread writes 〈‘h’〉 and another writes 〈‘i’〉.
The content of the memory buffer is a last written character (by one of the two
I/O threads), or unconstrained if both I/O threads have not written anything
yet.

predicate io_invar = λid, v.
∃ l, r, l_todo, r_todo.

[1/2]gc(id, left(init), l)
∗ [1/2]gc(id, right(init), r)
∗ l ++ l_todo = 〈‘h’〉
∗ r ++ r_todo = 〈‘i’〉

124 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

∗ if l 6= 〈〉 ∧ r 6= 〈〉 then
v = last(l) ∨ v = last(r)

else if l 6= 〈〉 then
v = last(r)

else if r 6= 〈〉 then
v = last(l)

main = λ.{
emp

}
let b := create_buf() in
let id := gcf_init() in
let iot1 := init in
let ioth := left(iot1) in
let ioti := right(iot1) in
let iot2 := join(ioth, ioti) in
let t1 := place(iot1, 〈〉,none,none, io_invar , id) in
let th1 := place(ioth, 〈〉, t1,none, io_invar , id) in
let th2 := place(ioth, 〈‘h’〉, t1,none, io_invar , id) in
let ti1 := place(ioti, 〈〉, t1,none, io_invar , id) in
let ti2 := place(ioti, 〈‘i’〉, t1,none, io_invar , id) in
let t2 := place(iot2, 〈〉, th2, ti2, io_invar , id) in

let _ := gcf_cons(id, iot1, 〈〉) in
let _ := gcf_cons(id, ioth, 〈〉) in
let _ := gcf_cons(id, ioti, 〈〉) in
let _ := gcf_cons(id, iot2, 〈〉) in
let _ := atintro in

let update_h := λ. Ð{
th1.invar(id,_) ∗ token_rec(th1)

}
(id, left(init)) := 〈‘h’〉{

th2.invar(id, ‘h’) ∗ token_rec(th2)
}

in
let update_i := λ. Ñ{

ti1.invar(id,_) ∗ token_rec(ti1)
}

REUSABILITY 125

(id, right(init)) := 〈‘i’〉{
ti2.invar(id, ‘i’) ∗ token_rec(ti2)

}
in
let r := { “h” : {“update_fun” : update_h, “t1” : th1},

“i” : {“update_fun” : update_i, “t1” : ti1}} in{
token(b, t1) ∗ print_hi_io(t1, t2, r)

}
print_hi(b ; r){

token(b, t2)
}{

buffer_invar(id, io_invar , b) ∗ token_rec(t2)
}

let _ := atdel in{
buf (b, c) ∗ (c = ‘h’ ∨ c = ‘i’)

}
buf_read(b){

res = ‘h’ ∨ res = ‘i’
}

4.4.6 Formalization: Higher order functions

In this section we formalize higher order functions. Higher order functions (such
as putchar in Sec. 4.4.2) are functions that accept another function (such as an
updater function) as argument. To support this, a value can be a function such
that it can be passed to another function.

The use of higher order functions for I/O style verification is explained in
Sec. 4.4.2.

Consider the following example:

let f := λg.
g(1)

in unit

It defines a function f. f has a parameter g. The body of f calls g with argument
1.

To verify this, we provide a specification for g in the precondition of f.

126 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

∀v1, v2, v3. `

P [v1/x]
[v2/y]
[v3/z]

 c[v1/x]
[v2/y]

Q[v1/x]
[v2/y]
[v3/z]

l

I

z = fv(P ∗Q) \ (xr ∪ yg)

FVI
`
{
emp

}
λxr; yg. c

{
res = λxr; yg. c ∗ (

{
P
}

(λxr; yg. c)(xr; yg)
{
Q
}l
I
)
}l
I

z = fv(P ∗Q) \ (xr ∪ yg)
FVA

`

{
P [v1/x][v2/y][v3/z]
∗ (
{
P
}
v(xr; yg)

{
Q
}l
I
)

}
v(v1; v2)

{
Q[v1/x][v2/y][v3/z]
∗ (
{
P
}
v(xr; yg)

{
Q
}l
I
)

}l
I

Figure 4.11: Proof rules for higher order functions

let f := λg.{ {
emp

}
g(x)

{
res > x

} }
g(1){

res > 1
}

in unit

The function call to g is then verified using this specification. The FVA proof rule
for function value application in Fig. 4.11 does exactly this: if the precondition
of a function value holds, then after calling the function value the postcondition
of the function value holds.

Definition 63: Proof rules extended for higher order functions

Fig. 4.11 extends the proof rules for higher order functions.

The caller of f can pass any function value as argument, as long as the caller
can prove that argument satisfies the specification.

We extend the assertion language with an assertion that states a function value
conforms to a certain specification:

REUSABILITY 127

Definition 64: Assertions extended for higher order functions

P ::= . . . |
{
P
}
v(x; y)

{
Q
}l
I

We want such a Hoare triple assertion to hold if the Hoare triple is valid.
Informally, a Hoare triple is valid, written |=

{
P
}
c
{
Q
}
, if for every heap h

that is a model of P , any execution of c “does not go wrong” and, if it terminates,
ends with a heap that satisfies Q.

What does it mean for an execution to not go wrong? Consider a heap h that
satisfies the precondition P and an execution of c that starts from h and yields
a trace τ and result value v. Whether this execution goes wrong or not, depends
largely on the trace τ .

Examples:

• h = {[]}, τ = ({[]},⊥) · ε. The execution goes wrong because the trace
expresses (using ⊥) that the execution crashes.

• h = {[]}, τ = ({[]}, inf) · ε. The execution is fine (does not goes wrong)
because it immediately goes into an infinite loop. This infinite loop is
caused by an atomic block that goes into an infinite loop (and does not
crash because then the trace would be ({[]},⊥) · . . .).

• h = {[1 7→ 3]}, τ = ({[1 7→ 3]}, {[1 7→ 3]}) · ε. The execution does not go
wrong.

• h = {[]}, τ = ({[1 7→ 3]}, {[1 7→ 3]}) · ε. The execution does not go wrong.

• h = {[1 7→ 3]}, τ = ({[1 7→ 3]}, {[1 7→ 4]}) · The execution goes wrong
because it does not preserve the atomic space given in the start heap
{[1 7→ 3]}.

• h = {[2 7→ 3]}, τ = ({[2 7→ 3, 3 7→ 4]}, {[2 7→ 3, 3 7→ 5]}) ·ε. The execution goes
wrong. 3 7→ 4 is not owned by the start heap, only 2 7→ 3 is. 3 7→ 4 can
be owned by another thread. Therefore, the thread under consideration
should not modify it.

• h = {[∃x.1 7→ x ∗ x > 1 , 2 7→ 3]}, τ = ({[1 7→ 2, 2 7→ 3, 7 7→ 8]}, {[1 7→ 3, 2 7→
4, 7 7→ 8]}) · ({[1 7→ 3, 2 7→ 4, 7 7→ 10]}, {[1 7→ 3, 2 7→ 5, 7 7→ 8]}) · ε. The
execution does not go wrong.

More general, consider the situation h, c ⇓ (h1, h2) · τ ′, v. The heaps in the trace
(h1, h2) · τ ′ are from the point of view of execution (not verification), and do

128 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

not contain atomic space chunks (such as P). This is consistent with the step
semantics: consider for example the AtomIntro step rule in Fig. 4.7 p. 114. It
does not actually add an atomic space chunk to the heap; it does not modify
the heap. The heaps in this trace can, however, contain ghost cells.

Contrary to the heaps in the trace, the heap h is from the point of view of
verification and represents the part of the heap that is owned by the thread that
yields the trace (h1, h2) · τ ′. h can contain atomic space chunks and fractional
chunks.

We split the heap h1 into three parts:

• The part that is h, but without the atomic space chunks

• The part that is covered by the atomic space chunks

• The part that is owned by other threads

If the execution does not go wrong, we expect h2 to consist of these three parts:

• The part that “evolved” from h (but without the atomic space chunks).
This contains the modifications of the heap performed by the thread.

• The part that is covered by the atomic space chunks, which might now
be different as long as it satisfies the assertion of the atomic space chunk.

• The part that is owned by other threads, which must stay the same.

Now we define this more formally. We will write definitions that do not look at
complete executions, but only at a first number of steps. These steps are split
up in two parts: the part of the steps outside an atomic block, and the part
inside. So when we say we only consider (m,n) steps of an execution, it means
we only look at the first m steps outside an atomic block, and only at the first
n steps inside an atomic block.

Definition 65: Steps

We range over steps with Λ: Λ ranges over N× N.

We define an ordering:

Definition 66: Ordering on steps

(m,n) < (m′, n′) ⇐⇒ m < m′ ∨ (m = m′ ∧ n < n′)

REUSABILITY 129

We define two addition operations:

Definition 67: Λ +outat k

(m,n) +outat k = (m+ k, n)

Definition 68: Λ +inat k

(m,n) +inat k = (m,n+ k)

Here, k,m, n range over N

Subtraction is similar, but is not a total operation ((0, 0)−outat 1 is undefined).

Definition 69: Λ−outat k

(m+ k, n)−outat k = (m,n)

Definition 70: Λ−inat k

(m,n+ k)−inat k = (m,n)

Operations to retrieve fields:

Definition 71: Λ.outat operation

(m,n).outat = m

Definition 72: Λ.inat operation

(m,n).inat = n

erat returns the heap obtained by removing all atomic space chunks:

130 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

Definition 73: erat(h)

(erat(h))(C) = if ∃P. C = P then 0 else h(C)

inv returns the multiset of assertions of atomic space chunks:

Definition 74: inv

inv(h, I) = λP. if I = inat then 0
else dh(P)e

For example, inv({[∃x. 1 7→ x , ∃x. 1 7→ x , 2 7→ 3]}, outat) = {[∃x. 1 7→
x, ∃x. 1 7→ x]}.

Validity of a Hoare triple is defined as follows:

Definition 75: Validity of a Hoare triple (|=
{
P
}
c
{
Q
}
I
)

|=Λ {P} c{Q}
I
⇐⇒

∀h. h �FΛ P ⇒
∀τ, v. c ⇓ τ, v ⇒
safe(Λ, h, τ, I,Q[v/res])

|=
{
P
}
c
{
Q
}
I
⇐⇒ ∀Λ. |=Λ {P} c{Q}

I

safe(Λ, h, τ, I,Q) defines what it means for an execution to not go wrong, when
the execution has trace τ , starts from heap h, is in an atomic block if I = inat
and outside an atomic block if I = outat and has the desired postcondition Q.

REUSABILITY 131

Definition 76: safe

safe′((0,_), h, τ, outat, Q) = true
safe′((_, 0), h, τ, inat, Q) = true
safe′(Λ +I 1, h, (h1, inf) · τ, I,Q) = true
safe′(Λ +I 1, h, (h1,⊥) · τ, I,Q) =
∀hr, hI . h1 = erat(h] hI] hr) ∧ hI �FΛ+I 1 ~inv(h] hI] hr, I)⇒ false

safe′(Λ +I 1, h, (h1, h2) · τ, I,Q) =
∀hr, hI . h1 = erat(h] hI] hr) ∧ hI �FΛ+I 1 ~inv(h] hI] hr, I)⇒
∃h′, h′I . h2 = erat(h′] h′I] hr) ∧ h′I �FΛ ~inv(h′] h′I] hr, I)
∧ safe(Λ, h′, τ, I,Q)
∧
(
I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat)

)
safe′(Λ +I 1, h, ε, I,Q) =
∃hQ, hr. h = hQ] hr∧
hQ �FΛ+I 1 Q

safe(Λ, h, τ, I,Q) =
∀Λ′ ≤ Λ. safe′(Λ′, h, τ, I,Q)

safe is used both for traces that occur inside an atomic block (and hence such
traces will be squashed into one pair), and traces that occur outside an atomic
block (and might therefore contain such a pair of heaps that is the result of
squashing a trace). The one but last argument expresses whether we are in an
atomic block or not.

In an atomic block, it is disallowed to create new atomic space chunks, as
enforced by

I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat)

When inside the context of an atomic block, the assertions of the atomic spaces
can be violated. So when we said the heaps in the trace have three parts where
one part represents the chunks covered by the atomic space, this part does
not exist (or is empty). Therefore, the function inv has a second parameter
representing whether it is used in the context of an atomic block, and returns
the empty set in that case.

Definition 77: Sat. rel. of asn extended for higher order functions

The satisfaction relation of assertions is extended by the inference rule of
Fig. 4.12 on the following page.

132 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

{
P
}
v(x; y)

{
Q
}l
I
∈ F

Fun
{[]} �F [π]

{
P
}
v(x; y)

{
Q
}l
I

Figure 4.12: Satisfaction relation of assertions for higher order functions (extends
Fig. 4.5 on page 110)

It basically says that the assertion expressing that a certain Hoare triple holds,
is true if the Hoare triple is in a given set F . This given set is supposed to
express the set of Hoare triples that hold.

For this definition to be useful, we need to define such a set.

We define such a set - or rather such sets - as follows:

Definition 78: FΛ

FΛ =
{{

P
}

(λxr; yg. c)(x; y)
{
Q
}l
I
|

∀v1, v2, v3. ∀z. z = fv(P) ∪ fv(Q) \ (x ∪ y)⇒
∀Λ′. Λ′ < Λ⇒
|=Λ′ {P [v1/x][v2/y][v3/z]

}
c[v1/x][v2/y]

{
Q[v1/x][v2/y][v3/z]

}
I

}

It immediately follows from this definition that F(0,0) is the set of all Hoare
triples, regardless of whether they are valid or not. Any syntactically correct
Hoare triple is in this set, including

{
emp

}
true

{
false

}
.

Note that the definition of FΛ only talks about Λ′ < Λ (not Λ′ ≤ Λ). Thanks
to this, we do not end up with a circular definition.

4.5 Reading

So far, we only wrote functions that modify the shared state, such as putchar ,
but we did not write functions that inspect it. When inspecting or reading the
shared state, the result depends on how the shared state has been modified
before, maybe by other threads.

READING 133

4.5.1 Prophecies

We deal with reading by using prophecy chunks. More precisely, the approach
is crafted to be able to use prophecy chunks for reading. First we explain
prophecies by example by showing how they can be used.

A prophecy chunk can be created, but only in ghost code, like so:

{
emp

}
let idg := pc() in unit{
∃v. pr(idg , v)

}
Creating a prophecy (pc()) returns an identifier id, and puts a chunk pr(id, v)
on the heap that links this identifier to a value v. The value is called the
prophetic value. This heap chunk is a special kind of chunk: it is not a regular
points-to chunk (not _ 7→ _) and it is not accessible memory. At this point,
nothing is known about the prophetic value: it might be greater than 42, or
maybe not. The prophetic value is not accessible in real code and (in our
programming language) also not in ghost code: it only exists in annotations
and in that heap chunk.

Besides using prophecy chunks in annotations, one can use the prophecy
assignment command (pa) to assign a value to the prophetic value:

{
emp

}
let xg := pc() in{
∃v. pr(xg , v)

}
{
pr(xg , ?v)

}
let _g := pa(xg , 123) in unit{
v = 123

}
After assigning a value to the prophetic value, the prophetic value equals the
value. Also, the prophecy chunk is lost to prevent assigning a different value
to the prophetic value later, which would be unsound. Note that you cannot
assign the prophetic value to itself, or assign a prophetic value v plus one to
itself. That would be unsound as well since it would yield v + 1 = v. This is

134 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

prevented because the prophetic value cannot be used in code (both real and
ghost), only in annotations.

To summarize, a prophetic value is a value that you can refer to in annotations
before you know what actual value it will be. You can then assign to the
prophetic value later. Prophecy chunks exist to facilitate the use of prophetic
values.

4.5.2 Recursive functions

We want to write a function with an I/O style contract that performs reading.
We implement this function as a recursive function.

For recursive functions, we use a let rec syntax, like the example below:

let rec f := λx ; y .
f(x + 1 ; y + 1) in

f(7 ; 8)

This program defines a function f whose body calls itself. Then, the program
calls f. Executing this program causes an infinite loop.

4.5.3 Example: reading

We define a peekchar function that reads from the buffer of one integer. peekchar
is blocking, i.e. it will wait until data is actually written into the buffer before
returning a read value.

let rec peekchar := λb ; r .
let read :=
〈
let read′ := buf_read(b) in
read′
〉 in
if read 6= 0 then

read
else

peekchar(b ; r)

READING 135

The implementation of peekchar works as follows. The peekchar function enters
an atomic block, in which it copies the integer from the buffer to a local variable
read′. After the atomic block the read value is returned, or peekchar is called
recursively in case no value (i.e. the value zero) has been read.

The definition of the peekchar_io action is as follows.

predicate peekchar_io = λt1, c, t2, r.
t2 = t1[progress := t1.progress ++ 〈c〉]
r.“t1” = t1
∗ pr(r.“prid”, c) Ê

∗
{
t1.invar(id, c) ∗ token_rec(t1) ∗ c 6= 0 ∗ c = x

}
r.“update_fun”(; x){

t2.invar(id, c) ∗ token_rec(t2)
}

The argument c of this I/O action is the value that will be read. We do not
know in advance what this value will be. The definition of the I/O action
contains an assertion Ê that states that a prophecy chunk exists for this value.

The verification of peekchar uses this prophecy as follows (see code below).
Inside the atomic block, after reading a value from the buffer, we insert ghost
code. The ghost code checks whether the integer read is not zero, i.e. the buffer
is not empty. If the buffer is not empty, the ghost code assigns the integer that
is read to the prophetic value Ë. Then, the ghost code calls the updater function.
The updater function updates the progress that tracks the characters read. The
postcondition of the updater function guarantees that the I/O invariant still
holds. The I/O invariant typically contains a 1/2 fraction of the ghost cell that
contains this progress.

let rec peekchar := λb ; r .{
token(b, ?t1) ∗ peekchar_io(t1, ?c, ?t2, r)

}
let read :=
〈

buf (b, ?v)
∗ token_rec(t1)
∗ t1.invar(id, v)
∗ peekchar_io(t1, c, t2, r)

let read′ := buf_read(b) in
let _g :=

136 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

if read′ 6= 0 then
pa(r.“prid”, read′); Ë

buf (b, read′)
∗ token_rec(t1)
∗ t1.invar(id, read′

∗
{
t1.invar(id, c) ∗ token_rec(t1) ∗ c 6= 0 ∗ c = x

}
r.“update_fun”(;x){
t2.invar(id, c) ∗ token_rec(t2)

}
∗ c = read′

r.“update_fun”(; read′)

else unit
in

read′
〉 in

[t1.iot.f] buffer_invar(t1.id, t1.invar, b)
∗ if read = 0 then token_rec(t1) ∗ peekchar_io(b, t1, c, t2, r)
else token_rec(t2) ∗ read = c

{
if read = 0 then token(b, t1) ∗ peekchar_io(b, t1, c, t2, r)

else token(b, t2) ∗ read = c

}
if read 6= 0 then

read
else

peekchar(b ; r){
token(b, t2) ∗ res = c

}
Contrary to putchar , peekchar does not modify the buffer. However, similar
to putchar , peekchar can modify the progress. Remember that the updater
function for putchar modifies the ghost cell that tracks the progress of the I/O
thread, such that the progress reflects that the character is written. Similarly,
the updater function for peekchar modifies the ghost cell that tracks the progress,
to reflect that the character is read.

Just like we encode the characters written in a progress which is encoded in
a place, we encode the characters read in a progress which is also encoded in
a place. In the examples we use here, there is no I/O thread that both reads
and writes, so it is fine to encode the bytes read and the bytes written both as
just a list of integers. In case you want to mix reading and writing in one I/O

READING 137

thread, you will need another encoding than just a list of integers, such that one
progress can track both characters read and written in the same I/O thread.

Tracking progress of characters read, allows the I/O invariant to constrain them.
Let’s build an example readwrite where one thread reads a character (using
peekchar), concurrently with one thread that writes a character.

Depending on how readwrite is used, it can yield different results. readwrite
might be used concurrently with another function, and the buffer might already
contain some content before readwrite is called.

In the particular case where readwrite is not called concurrently with other
code, and the buffer is initially empty, the character read will be equal to the
character written.

If we want to prove, while verifying a caller of readwrite, that the character
read is equal to the character written, we will have to come up with an I/O
invariant that helps to prove this. For this particular example, the I/O invariant
can track both the progress of the writing I/O thread and the progress of the
reading I/O thread. The I/O invariant can then constrain that what is read is
a prefix of what is written. This way, while verifying the caller of readwrite, we
can, thanks to the I/O invariant, prove the desired property.

Note that coming up with an I/O invariant is necessary when verifying the
caller of readwrite, not when verifying readwrite itself.

Let’s turn this idea into code. The readwrite function is as follows:

readwrite = λb ; r .
token(b, t1) ∗ split_io(t1 , tr1 , tw1)
∗ putchar_io(tw1 , c, tw2, r.“print”)
∗ peekchar_io(tr1 , c′, tr2 , r.“peek”)
∗ join_io(tr2 , tw2 , t2)

let x := cons(0) in
let _g := split() in(
[x] := peekchar(b ; r.“peek”) || print_i(b ; r.“print”)

)
;

let _g := join() in
[x]{

token(b, t2) ∗ res = c′
}

Verifying this function is easy since it has an I/O style specification and only
calls I/O style functions.

138 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

The implementation of main simply creates the buffer and calls readwrite on
an empty buffer. Because the buffer is empty, the character read will be equal
to the character written.

main = λ.{
emp

}
let b := create_buf () in
let c′ := readwrite(b) in
c′{

res = ‘i’
}

The specification of main is not in an I/O style. The postcondition simply
states the return value is ‘i’.

To be able to verify main, we need to come up with an I/O invariant and
updater functions.

We define the I/O invariant as follows:

predicate io_invar = λid, v.
∃ v, l, r, l_todo, r_todo.
∗ [1/2]gc(id, left(init), l)
∗ [1/2]gc(id, right(init), r)
∗ l ++ l_todo = 〈‘i’〉
∗ r ++ r_todo = l
∗ if l = 〈〉 then

v = 0
else

v = last(l) ∧ v 6= 0

The I/O invariant uses two progresses: one progress for left(init) for the I/O
thread that writes, and one progress for right(init) for the I/O thread that reads.
It states that the bytes read must be a prefix of the bytes written. It allows
reading to lag behind on writing, which is necessary in a multithreaded setting.

The proof outline for main and the updater functions are as follows.

main = λ.{
emp

}
let b := create_buf () in

READING 139

let id := create_gcf() in
let prid := pc() in{
. . . ∗ pr(prid, ?c)

}
let iot1 := init in
let iotw := left(iot1) in
let iotr := right(iot1) in
let iot2 := join(iotw, iotr) in
let t1 := place(iot1, 〈〉,none,none, io_invar , id) in
let tw1 := place(iotw, 〈〉, t1,none, io_invar , id) in
let tw2 := place(iotw, 〈‘i’〉, t1,none, io_invar , id) in
let tr1 := place(iotr, 〈〉, t1,none, io_invar , id) in{
. . . ∗ ?tr2 = place(iotr, 〈c〉, t1,none, io_invar , id)

}{
. . . ∗ ?t2 = place(iot2, 〈〉, tw2, tr2 , io_invar , id)

}
let _ := gcf_cons(id, iot1, 〈〉) in
let _ := gcf_cons(id, iotw, 〈〉) in
let _ := gcf_cons(id, iotr, 〈〉) in
let _ := gcf_cons(id, iot2, 〈〉) in

let _g := atintro in
let updater_w := λ.{

io_invar(id,_) ∗ token_rec(tw1)
}

(id, left(init)) := 〈‘i’〉{
io_invar(id, ‘i’) ∗ token_rec(tw2)

}
in
let updater_r := λ ; x .{

io_invar(id, c) ∗ token_rec(tr1) ∗ c 6= 0 ∧ c = x
}

(id, right(init)) := 〈x〉{
io_invar(id, c) ∗ token_rec(tr2)

}
in
let r := { “print” : {“update_fun” : updater_w, “t1” : tw1},

“peek” : {“update_fun” : updater_r, “t1” : tr1, “prid” : prid}} in

140 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

pr(vid,_) /∈ h
Pc

pc() ⇓ (h, h] {[pr(vid, v)]}) · ε, vid

Pa
pa(vid, v) ⇓ (h] {[pr(vid, v)]}, h) · ε, unit

@v′. h(pr(v1, v
′)) ≥ 1

PaErr
pa(v1, v2) ⇓ (h,⊥) · ε,⊥

Figure 4.13: Step semantics for prophecies

token(b, t1) ∗ split_io(t1, tr1, tw1)
∗ putchar_io(tw1, ‘i’, tw2, r.“print”)
∗ peekchar_io(tr1, c, tr2 , r.“peek”)
∗ join_io(tr2 , tw2, t2)

let c′ := readwrite(‘i’ ; r) in{

token(b, t2) ∗ c′ = c
}

let _g := atdel in{
c′ = c ∧ c = ‘i’

}
c′{

res = ‘i’
}

4.5.4 Formalization: Prophecies

In this subsection we formalize prophecies. Prophecies were introduced informaly
in Sec. 4.5.1.

We extend the syntax of commands with a command to create prophecies and
a command to assign to prophecies:

Definition 79: Commands extended for prophecies

c ::= . . . | pc() | pa(e, e)

READING 141

Pc
`
{
emp

}
pc()

{
∃v.pr(res, v)

}g
I

Pa
`
{
pr(vid, v1)

}
pa(vid, v2)

{
v1 = v2

}g
I

Figure 4.14: Proof rules for prophecies

A heap chunk can now also be a prophecy chunk:

Definition 80: Chunks extended for prophecies

C ::= . . . | pr(v, v)

Definition 81: Assertions extended for prophecies

P ::= . . . | pr(e, e)

A chunk pr(v1, v2) states a prophetic value v2 exists with ID v1. The pa
command is used to assign a value to a prophetic value. To specify to which
prophetic value should be assigned, it is not an option to have the prophetic
value as an argument to pa since the prophetic value is not accessible from
code (not from ghost code, not from real code). The IDs are used to specify
which prophetic value one wants to assign to. A command pa(v1, v2) assigns
the value v2 to the prophetic value with ID v1.

Definition 82: Step semantics extended for prophecies

Fig. 4.13 on the preceding page lists the step semantics for prophecies.

The Pc step rule makes sure there are never two prophecy chunks with the
same ID by requiring that no prophecy chunk with the ID already exists in
the heap. The prophetic value is unconstrained: the execution of pc() that
yields prophetic value 4 is a valid execution. For example, the execution
pc() ⇓ ({[]}, {[pr(1, 4)]}) · ε, 1 is a possible execution: this we can prove directly
using the Pc step rule. It is the execution where the a prophetic value 4 with
ID 1 is created.

142 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

So what happens if we actually wanted to assign value 5 to the prophetic value
4? In case we assign 5 to the prophetic value, we have a command such as
let id := pc() in pa(id, 5). While it is true that

pc() ⇓ ({[]}, {[pr(1, 4)]}) · ε, 1

it is not true that

pa(1, 5) ⇓ ({[pr(1, 4)]}, {[pr(1, 5, assig)]}) · ε, unit (not true)

So there simply does not exist an execution where a prophetic value 4 is created
and later value 5 is assigned to it. There does, however, exist an execution
where prophetic value 4 is created and later value 4 is assigned to it. Note that
the assignment of the prophetic value does not have to be a hardcoded constant
such as 4: it could be the result of a complex calculation.

Definition 83: Extended proof rules for prophecies

Fig. 4.14 on the preceding page extends the proof rules with two rules for
prophecies.

The Pc proof rule simply states that after creating a prophecy chunk and value,
the prophetic value exists and the prophecy chunk is on the heap. Because of
the existential quantification in the assertion of the postcondition, we simply
know a prophetic value exists but we do not know what its value is or is not.

The Pa proof rule states that after assigning to a prophetic value, the prophetic
value is equal to the chosen value. This equality in the postcondition conceptually
brings the prophetic value “to the ghost code”: before the assignment the
ghost code cannot talk about the prophetic value, but after the assignment the
prophetic value is known to be equal to the chosen value, therefore talking about
the chosen value after that point is the same as talking about the prophetic
value. This allows one to have a program that returns a value, where the
postcondition states the return value is equal to the prophetic value. Normally
the program cannot return the prophetic value because it does not have access
to it, but after assigning a value to the prophetic value it can return the value.

4.5.5 Formalization: Recursive functions

In this subsection we formalize recursive functions. Recursive functions were
explained informally in Sec. 4.5.2 and used in Sec. 4.5.3.

Consider the following example.

READING 143

∀v′x, v′y, v′z. `

P [v′x/x]
[v′y/y]
[v′z/z]
∗A(A)

 c[G, v′x/g, x][v′y/y]

Q[v′x/x]
[v′y/y]
[v′z/z]

l

I

A = λa.
{
g = G ∗ a(a) ∗ P

}
g(g, x; y)

{
Q
}l
I

z = fv(P ∗Q) \ (x ∪ y)
{g, a} ∩ z = ∅

res /∈ fv(P)
G = λg, x; y. c

Rec
`
{
emp

}
λx; y. let g = λg, x; y. c in g(g, x; y)

{{
P
}

res
{
Q
}l
I

}l
I

Figure 4.15: Derived proof rule for recursive functions

let f := λx ; y .
let g := λg, x ; y .

g(g, x ; y) Ê

in
g(g, x ; y) Ë

in
f(2 ; 3) Ì

Executing this example would result in an infinite loop.

In this example, a function f is defined. Its body contains a definition of a
function g. g expects to get itself as an argument g. So the body of g can
call itself (see Ê). The body of f contains, after defining g, a function call to g
(see Ë) where it passes g as an argument to g. After f is defined, f can just be
called (see Ì) without having to worry that internally recursion happens.

For functions that perform recursion, we use the following syntactic sugar:

let rec f := λx ; y . cf in c′

We only use this when x and y do not contain f , and occurrences of f in cf are
function applications. So we do not consider cases where code in cf passes f to
another function or compares it to other values.

This syntax is syntactic sugar for:

144 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

let f := λx ; y .
let g := λg, x ; y .
cg

in
g(g, x ; y)

in
c′

where cg is constructed by replacing recursive calls f(ex; ey) in cf with
g(g, ex; ey).

To prove a Hoare triple for a program of this shape, we introduce a derived
proof rule, see Fig. 4.15 on the previous page. Intuitively, it requires to prove a
Hoare triple for the body of the recursive function (cg), where the precondition
includes a Hoare triple assertion such that cg can call itself.

A proof that this derived proof rule holds, is in Appendix B.2 on page 207.

4.6 Multiple instances of the same data structure

In Sec. 4.4.1 we defined functions to manipulate a buffer. These functions
had non-I/O style specifications. This buffer and functions were then used in
I/O style functions such as putchar . putchar was then used in an application,
in such a way that putchar can be reused in a different application without
changing its specification.

Ideally, we would like to be able to (re)use putchar in a setting where there
are multiple buffers. We want to go even further, and support accessing the
different buffers concurrently.

We did not support having multiple instances of the buffer, since buffer_invar
(used in token) contained hardcoded knowledge that there is only one buffer.

To solve this problem, we put each instance of the buffer in a different atomic
space (see Ê below). We also create a ghost cell for each buffer, of which we we
put a 1/2 fraction in the atomic space of the buffer. The assertion of the atomic
space enforces that the ghost cell equals the content of the buffer. The other
1/2 fractions of the ghost cells that track the content of the buffers are in the
I/O invariant (Ë). This way, the I/O invariant “knows” the contents of all the
buffers.

predicate token = λb, t.

MULTIPLE INSTANCES OF THE SAME DATA STRUCTURE 145

[t.iot.f] t.invar(t.id)
∗ token_rec(t)

predicate buffer = λid, name, b.
∃v. buf (b, v) ∗ [1/2]gc(id, name, v) Ê

predicate example_io_inv = λid.
∃buf1, buf2, prog1, prog2.
gc(id, left(init), prog1)
∗ gc(id, right(init), prog2)
∗ gc(id, “buf1”, buf1) Ë
∗ gc(id, “buf2”, buf2) Ë
∗ . . . // (constrains buf1, buf2, prog1, prog2)

4.6.1 Example: putchar (multiple instances supported)

Since there are potentially multiple instances of the buffer, the precondi-
tion of putchar now contains the specific buffer to which putchar writes
([?π]buffer(. . .)).

putchar = λb, c ; r .{
token(?t1) ∗ [?π]buffer(t1.id, ?buf_name, b)
∗ putchar_io(buf_name, t1, c, ?t2, r)

}
〈 buf_write(b, c) 〉{

token(t2) ∗ [π]buffer(t2.id, buf_name, b)
}

The updater function’s precondition contains a 1/2 fraction of the ghost cell that
tracks the contents of the buffer. The other 1/2 fraction is in the I/O invariant.
The updater function writes to this ghost cell, and shows that the I/O invariant
still holds after doing so. It also still updates the ghost cell that tracks the
progress.

predicate putchar_io = λbuf_name, t1, c, t2, r.
t2 = t1[progress := t1.progress ++ 〈c〉]
∗ r.“t1” = t1

∗
{

t1.invar(t1.id) ∗ [1/2]gc(t1.id, buf_name,_) ∗ token_rec(t1)
}

r.“update_fun”()

146 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

{
t2.invar(t2.id) ∗ [1/2]gc(t1.id, buf_name, c) ∗ token_rec(t2)

}

We adapt the verification of putchar to its new specification and to the new
predicate definitions:

putchar = λb, c ; r .{
token(?t1) ∗ [?π]buffer(t1.id, ?buf_name, b)
∗ putchar_io(buf_name, t1, c, ?t2, r)

}
〈

token_rec(t1) ∗ buf (b, ?v) ∗ [1/2]gc(t1.id, buf_name, v) ∗ t1.invar(t1.id)
∗ r.“t1” = t1 ∗ t2 = t1[progress := t1.progress ++ 〈c〉]
∗
{

t1 .invar(t1.id) ∗ [1/2]gc(t1.id, buf_name,_) ∗ token_rec(t1)
}

r.“update_fun”(){
t2.invar(t2.id) ∗ [1/2]gc(t1.id, buf_name, c) ∗ token_rec(t2)

}

buf_write(b, c);
let _g := r.“update_fun”() in unit{

token_rec(t2) ∗ buf (b, c) ∗ [1/2]gc(t1.id, buf_name, c) ∗ t2.invar(t2.id)
}

〉{
token(t2) ∗ [π]buffer(t2.id, buf_name, b)

}
4.6.2 Example: Writer cat reader

The code of the example of this section is too big to fit in paper format, but is
verified with the VeriFast program verifier (see Sec. 3.7.5). It is written as C
files with annotations and follows the I/O verification approach.

The example consists of three parts, each running in a different thread. The
first part, the writer, writes to a buffer. The second part, called cat, reads from
that buffer and writes what it reads to a second buffer. The third part, the
reader, reads from the second buffer and calculates the sum of the values read.
It returns this sum.

The program is built compositionally.

• At the lower layer is a circular buffer with a regular (non-I/O style)
specification.

FORMALIZATION: ERASURE 147

• A getchar and a putchar function are implemented on top of the circular
buffer. Synchronization is not done by atomics but by using a mutex and
condition variables for the buffer, and a ghost mutex for the I/O invariant.
The specifications are I/O style.

• The writer, cat, and reader functions have I/O style specifications and are
implemented on top of getchar and putchar. writer just writes the numbers
1, 2, 3, 4. cat and reader do not know what they will read.

• The main function does not have an I/O style specification. It creates
the two buffers and starts the threads such that writer, cat, and reader
functions run concurrently. main waits until they terminate. It then
returns what reader returned. The postcondition of main states the return
value is equal to 10. The verification of main manages to extract this
information from the I/O style postconditions of writer, cat and reader.

4.7 Formalization: Erasure

Programs can contain commands that are only meant for verification, namely
commands for ghost cell families, prophecies and atomic spaces. Erasure of a
program means removing these parts from the program. Execution of an erased
program is the same as executing the original (not erased) program, except
the original program can have ghost cells chunks, prophecy chunks and atomic
space chunks in the heap. The return values and writing to and reading from
points-to heap cells remain the same.

Definition 84: Erasure (er(c))

Erasure of a command is defined in Fig. 4.16 on the next page.

This definition relies on the availability of a termination checker or a way to
prove termination: we want to only consider programs where the ghost code
terminates. This termination checker or proof system needs to be sound but
does not have to be complete: if it can show termination of the ghost code of
interest it is good enough. Termination checking is outside the scope of this
thesis, see e.g. [33].

We do not want the result of ghost code to be used in real code. For example,
we do not want code that first creates a ghost cell family, and then writes to
memory the ID of the ghost cell family.

This is enforced as follows.

148 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

er(let xr := c1 in c2) = let xr := er(c1) in er(c2)
er(let xg := c1 in c2) = er(c2) (undefined if ¬terminationchecker(c1))

er(xg) = (undefined)
er(xr) = xr

er(e :: e) = er(e) :: er(e)
er(〈〉) = 〈〉
er(v) = v

er(e1(e2; e3)) = er(e1)(er(e2))
er(if e then c1 else c2) = if er(e) then er(c1) else er(c2)

er(c1 || c2) = er(c1) || er(c2)
er([e]) = [er(e)]

er([e1] := e2) = [er(e1)] := er(e2)
er(cons(e)) = cons(er(e))

er(λxr; yg. c) = λxr. er(c)
er(〈c〉) = 〈er(c)〉

er(create_gcf()) = (undefined)
er(gcf_cons(e1, e2, e3)) = (undefined)

er((e1, e2) := e3) = (undefined)
er(pc()) = (undefined)

er(pa(e1, e2)) = (undefined)

Figure 4.16: Definition of erasure

First, Hoare triples are annotated as ghost or real, using a superscript g or r:{
P
}
c
{
Q
}r is annotated as real and

{
P
}
c
{
Q
}g is annotated as ghost. We use

l to range over {g, r}.

Second, for non-compound commands, the proof rules enforce that Hoare
triples for ghost commands are marked as ghost, and for real commands are
marked as real. For example, the proof rules in Fig. 4.10 p. 117 allow to prove{
P
}
create_gcf()

{
Q
}g
I
but not

{
P
}
create_gcf()

{
Q
}r
I
.

Third, we do not want real code nested inside ghost code. The only compound
command that allows mixing ghost and real code is let x := c1 in c2. Here, c1
can be ghost while c2 can be real. Looking at the proof rules in Fig. 4.6 p. 112
we can see that this is allowed, but these proof rules do not allow c1 to be real
while c2 is ghost.

Fourth, for compound commands, the proof rules enforce that there is no
“data flow” from ghost commands to real commands, but data flow from real
commands to ghost commands is okay. To do that, we split variables into ghost
variables and real variables. A superscript indicates whether a variable is ghost
or real: xr is a real variable and yg is ghost. Real code should not use ghost

SOUNDNESS 149

variables, but ghost code can use real variables.

Fifth, since we support higher order function, we should prevent ghost code to
call a function that is passed as an argument if that function contains real code.
The proof rule to call a function in Fig. 4.11 p. 126 enforces this. A Hoare triple
assertion

{
P
}
v(xr; yg)

{
Q
}l also has a ghost level l. Given such an assertion

in the precondition, the function call is allowed if the caller has the same ghost
level as the callee according to the assertion. Also note that in the definition of
FΛ, we require the Hoare triple to be provable with the given ghost level. If
this was left out from the definition, one could swap a ghost Hoare triple chunk
with a real Hoare triple chunk using the consequence proof rule.

4.8 Soundness

We prove soundness of the approach (except erasure).

Lemma 1: Safe interleaving

∀hA, τA, QA, hB , τB , QB ,Λ, I.
safe(Λ, hA, τA, I, QA) ∧
safe(Λ, hB , τB , I, QB) ∧
τ ∈ τA || τB ⇒
safe(Λ, hA] hB , τ, I,QA ∗QB).

Proof. Well-founded induction on Λ. Case analysis on τ . (Full proof on
p. 185)

Lemma 2: Safe seq

∀Λ, h, τA, I, Q1, Q2.(
safe(Λ, h, τA, I, Q1) ∧ (∀Λ.∀hQ.hQ �Fm Q1 ⇒ safe(Λ, hQ, τB , I, Q2)

)
⇒ safe(Λ, h, τA; τB , I, Q2).

Proof. Well-founded induction on Λ. Case analysis on τA and τB. (Full proof
on p. 187)

150 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

Lemma 3: Safe leak

∀Λ, h, τ, I,Q,R. safe(Λ, h, τ, I,Q ∗R)⇒ safe(Λ, h, τ, I,Q).

Proof. Well-founded induction on Λ. Case analysis on τ . (Full proof on
p. 189)

Lemma 4: Safe frame

∀Λ, h,Q,R, I, τ, hR.
safe(Λ, h, τ, I,Q) ∧ hR �FΛ R⇒ safe(Λ, h] hR, τ, I,Q ∗R)

Proof. Well-founded induction on Λ. Case analysis on τ . (Full proof on
p. 190)

Lemma 5: Safe conseq

∀Λ, h, τ, I,Q, P.
(P → Q)⇒
safe(Λ, h, τ, I, P)⇒
safe(Λ, h, τ, I,Q).

Proof. Well-founded induction on Λ. Case analysis on τ . (Full proof on
p. 191)

Lemma 6: Safe outcome

∀Λ, h1, τ, n, h2,Λ, Q, hr.
h1, τ → (n, h2)
∧ safe(Λ +inat n+inat 1, h, τ, inat, Q)
∧ h1 = erat(h] hr)
⇒
∃h′, hrr. h2 = erat(h′] hrr] hr)
∧ h′ �FΛ Q
∧ inv(h] hr, outat) = inv(h′] hrr] hr, outat).

SOUNDNESS 151

Proof. Induction on n. (Full proof on p. 191)

Lemma 7: Unsafe inat outcome

∀h1, τ, n, h,Q, hr. h1, τ → (n,⊥) ∧ h1 = h] hr ⇒
¬safe((0, n+ 1), h, τ, inat, Q).

Proof. Induction on n. (Full proof on p. 192)

Lemma 8: Hoare triple validity

∀P, c,Q, I. `
{
P
}
c
{
Q
}
I
⇒ |=

{
P
}
c
{
Q
}
I
.

Proof. Induction on `
{
P
}
c
{
Q
}
I
using lemmas. (Full proof on p. 193)

Definition 85: OK

OK(τ) = ∀O. ∅, τ → O ⇒ @n.O = (n,⊥)

Lemma 9: Unsafe outcome

∀h, τ,Q. ¬OK(τ)⇒ ∃Λ.¬safe(Λ, ∅, τ, outat, emp)

Proof. Induction on the number of steps until error. (Full proof on p. 206)

Lemma 10: Error preservation (erasure)

∀c, τ, v, P,Q, I. er(c) ⇓ τ, v ∧ ¬OK(τ)∧ `
{
P
}
c
{
Q
}r
I
⇒ ∃τ ′. c ⇓ τ ′, v ∧ ¬OK(τ ′)

To prove this, one needs an approach for proving termination of ghost code,
which is outside the scope of this thesis. Remember that we only consider
programs where the ghost code terminates.

152 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

Theorem 5: Soundness (in-memory)

∀c. `
{
emp

}
c
{
emp

}r
outat ⇒

∀τ, v. er(c) ⇓ τ, v ⇒
OK(τ)

Proof. Proof by contradiction using lemmas. (Full proof on p. 207)

4.9 Conclusions, related work, and future work

We used an I/O style of writing specifications and verifying programs that
perform I/O, to verify programs that do not perform I/O. We implemented the
approach on top of the VeriFast program verifier for verifying C programs. We
formalized a programming language that supports nontermination, concurrency,
atomic blocks, and prophecies. We formulated Hoare logic style proof rules for
this programming language, showed how the approach can be applied in this
programming language, and proved soundness of the proof rules, except erasure,
which is future work.

Iris [38] provides a framework for reasoning about a shared resource, such as
the heap. We expect that our approach (except reading) can be implemented
in Iris rather straightforwardly. This is future work. Supporting prophecies or
finding a way to support reading in Iris is also future work.

Around the same time that we developed the I/O verification approach
(Chapter 3) and the I/O style verification approach for memory manipulating
programs (this chapter), histories [10] and futures [52] were developed.

The approach of histories [10] is an approach for functional verification of
terminating executions of concurrent software. The approach uses a process
algebra that supports parallel and sequential composition, choice, if-then-
else, named processes with arguments, and actions with arguments for which
preconditions and postconditions are written. Performed actions are registered in
such process algebra term. Annotations declare which blocks of code corresponds
to which action. The tool verifies whether such code block respects the
specification of the action consisting of the precondition and postcondition.
A history can be destructed. After destruction, one receives standard memory
chunk permission to the memory of which the contents is tracked by the history.
Upon destruction, a prover for the process algebra is used to automatically verify
whether desired properties hold for the process algebra term that represents the

CONCLUSIONS, RELATED WORK, AND FUTURE WORK 153

history of performed actions, e.g. to conclude from the history that a calculated
value equals the desired value. Thread local reasoning is supported by splitting
and merging such process algebra terms such that each thread can independently
use one. Furthermore, separate process algebra term can be used for tracking
disjoint sets of memory locations. Splitting and merging such histories use
dummy synchronization actions to remember at which point a history was split.
For expressivity, the process algebra term can also contain a process name
with arguments – this allows recursion in the specification consisting of such
a process algebra term: the postcondition of a function can state the history
is a process algebra term that contains such a process name with arguments.
In the approach, for such a process name a precondition and postcondition
is written, together with a body consisting of a process algebra term. In the
verification approach, the verifier checks whether the process algebra term
respects its specification consisting of such a precondition and postcondition, as
follows. First, the body is normalized to not contain parallel composition (||).
This is automatic and might not always work. Second, the normalized body
is converted to Java code. Third, the Java code is verified with respect to the
precondition and postcondition.

The approach of futures [52] builds further on the idea of histories and adds
support for nontermination by switching from a postcondition based approach
to a precondition based one: the process algebra term represents permissions
to perform actions. To support thread-local reasoning, it supports swapping
parallel composition (||) of the process algebra with separating conjunction (∗)
from separation logic (instead of sychronization actions). A future contains
the actions to be performed in the future, as a process algebra term. When
all actions have been performed, the process algebra term is then epsilon. The
future remembers the process algebra name for which it is created. The future
can only by initialized for a process name with arguments, so the initial process
algebra term consists of a process name application. So upon destruction we
know the postcondition of the process name holds.

Histories and futures do not support a uniform specification style for I/O and
in-memory applications, but we expect histories and futures to be adaptable
to also support I/O verification. Compared to our approach, it uses a process
algebra to express the actions done and allowed, while we express this using a
separation logic with abstract predicates. Because a process algebra is used,
it supports verification of liveness properties (which we do not) by performing
verification on the level of the process algebra term directly by a verifier for the
process algebra, but verification on the level of the process algebra term is not
modular.

While the I/O verification approach itself (Chapter 3) does not suffer from
heavy annotation overhead, the current implementation of the idea behind

154 I/O STYLE VERIFICATION OF MEMORY-MANIPULATING PROGRAMS

our verification approach for memory manipulating programs does. Histories
and futures do not seem to have a heavy annotation overhead. Most of the
annotations (such as defining the places) are boilerplate; reducing this annotation
overhead is future work.

Chapter 5

Conclusion

Errors in software can lead to loss of life (airplanes, electric bikes, hospital
equipment, . . .), heavy economical losses (power outages, self destructing rockets,
. . .), serious security issues (protocol implementations, parsers, . . .), and daily
frustration (crashes of desktop software, . . .). Software is just data. Contrary
to physical equipment that can suffer from mechanical faults (wear, corrosion,
. . .) software can not.

But since software is just data, we should be able to create the perfect data
– in theory. In practice: how does the creator of a piece of software know,
after having created the software, that it is free of bugs: that there are e.g. no
unintended race conditions or forgotten input validations? “I do not remember
having forgotten something” does not sound very convincing. This is not new
or unknown: all or almost all programmers do not just write code, they also
run their software to check that it works, simply because the probability that
the software (or a nontrivial modification thereof) works correctly immediately
after writing it is rather low. One step further is automatic tests (i.e. software
that runs target software and checks that the results or behavior of the target
software is correct), but in nontrivial software, not finding an error through
testing does not mean there are no errors.

To know with much more certainty that a piece of software is free of bugs, there
are formal sound verification approaches: they allow to prove absence of (classes
of) bugs.

In Chapter 2 we tried (and succeeded) in applying such a verification approach
on software taken “from the wild”: we verified absence of unintended race
conditions, conformance to a set of (complex) API rules of, and absence of

155

156 CONCLUSION

crashes and illegal memory accesses of a USB keyboard driver from the Linux
kernel, using the verification tool VeriFast.

The case study illustrates its usefulness in catching bugs: thanks to the case
study, we found two bugs in the driver. They were very well hidden and it was
only because of performing verification that we found them. We wrote patches
to fix these bugs. The patches are now included in Linux.

We now know the approach can deal with the complex USB API. The approach
can also deal with an unbounded number of concurrent threads, which not all
verification approaches can deal with.

While the execution time of the verification tool (about one second for the
whole driver) does not impose any problems, the number of annotation lines
required is substantial: there are about two lines of annotation for one line of C
code for the driver itself, plus about the same number of lines of annotations
for API specifications as for annotations for the driver itself. The work on
API annotations can be reused for other drivers (but (parts of) API unused by
this driver and used by another driver will have to be annotated as well when
verifying such other driver). Source code that is not complex and does not use
a complex API can be verified rather quickly. Complex code, including code
that uses a complex API, takes a lot longer to verify. This is as expected but
hard to quantify.

Work remains to be done in this area. The case study does not verify functional
correctness: if a callback in the driver receives a keypress from the USB
API, and the callback sends the keypress to the input API, we do not verify
that the callback sends the keypress of the correct key to the input API: if
the implementation would always send to the input API that the F5 key is
pressed, even if actually another key is pressed, the verification approach would
technically not catch this bug. Even worse: we do not verify that any keypress
is reported at all. A case study that also verifies functional correctness is future
work. Unload-safety (verifying that the kernel does not maintain pointers to
memory or functions of the driver after the driver is dynamically unloaded) is
also future work.

Besides the case study, we also created a verification approach to verify
input/output (I/O) properties of programs (Chapter 3). Input/output is the
behavior of the program that can be observed by the outside world. For example,
given the software that drives an elevator, we can observe the doors opening,
closing, lights going on and off, and the engine starting and stopping. We care
about the correct behavior and also its order: first close the door, only after
that start the engine. The verification approach does not only allow to specify
such intended behavior, but also to verify that any execution of the program

CONCLUSION 157

does not violate such specification.

Such specifications are formulated as the intended behavior (if button pressed,
first close doors; afterwards: if closing doors was successful, then start engine),
but not from a crosscutting point of view (at any point in time, do not drive
engine while doors are open).

We identified a number of requirements for I/O verification, of which our
approach supports the following ones: support verifying the order in which
I/O happens, support specifying the I/O behavior depending on the input (e.g.
if high number is read, write something else than if a low number is read),
support programs that do not always terminate, support underspecification (the
program can do A or B), and support modularity and compositionality (define
I/O actions on top of other I/O actions) to make the approach more scalable.
The approach allows to model and verify complex I/O, as illustrated by the
examples such as the one that models arbitrary Turing machines.

There are requirements which our I/O verification approach does not meet. The
approach does not verify that any I/O happens or happens in time, nor takes
into account any physical constraints (if the brakes are hit, the elevator, car
or drone will take some time to stop depending on the brakes and the speed
and mass of the object that should stop). These requirements are less pressing
for the type of I/O the approach was developed for (writing and reading from
files, reading from keyboards and mice, and writing to a computer screen), but
are very important in other settings. Adding support for these requirements is
future work.

We also implemented the approach in VeriFast. This allows to apply the
approach on C programs, which we did for some example programs. The
approach is simple and practical in VeriFast.

More technically, we also mathematically formalized it, which allows us to prove
soundness: now we know that if a program is verified with the approach, the
program indeed does not violate its I/O specifications. We also proved this in
Coq (a program that can check correctness of mathematical proofs, if the proof is
formulated in a strict and verbose way). Although the the verification approach
as implemented in Coq does support modeling nonterminating executions, it
does not support verifying nonterminating executions. This is future work.
We sketched how the I/O verification approach can be implemented in Iris, a
framework for reasoning about shared resources in a concurrent setting. This is
only on paper: We do not have a a Coq formalization of this that uses the Coq
formalization of Iris; this is future work.

Converting equivalent specifications is future work (e.g. verify a function that
has an I/O specification whose body consists of calling another function with

158 CONCLUSION

equivalent I/O specification). A case study is also future work.

In Chapter 4 we developed an approach to use the same verification style of
verifying I/O for programs that do not perform I/O at all, but instead only read
and write to memory that can be shared between threads. Besides concurrency,
the approach supports reuse of specifications and of code.

Since the same style of I/O specifications is used, one can switch between
verifying an implementation that performs memory manipulation (e.g. a
filesystem implemented in RAM) and an implementation that performs I/O
(e.g. a filesystem implemented by reading/writing network messages), while
keeping the same specifications.

We wrote a formalization of a programming language that supports nontermi-
nation, concurrency, atomic blocks (blocks of code that are never executed
concurrently with other code), and prophecies (allow to mention during
verification values at a point in the execution of the program where such
value is not yet assigned and thus not yet know what the value will be)
together with proof rules to verify specifications. We proved soundness of
these proof rules (except erasure). We explained how the approach for I/O style
verification of memory-manipulating programs can be applied in the context of
this programming language.

We implemented this I/O style verification approach in VeriFast and performed
verification of some examples in VeriFast. The amount of annotation overhead
for these small examples is high. While we developed an idea for I/O style
verification, and illustrated that it works, the current implementation of this idea
requires boilerplate annotations (such as defining the places). As an upside, the
implementation of the idea of the approach can be applied in VeriFast without
making modifications to VeriFast, but we think a more simple implementation
of the idea with less annotation overhead should be possible. Developing this is
future work. A case study is also future work.

Appendix A

Proofs I/O verification
approach

A.1 Unique weakest precondition

In Sec. 22 on p. 46 we defined wp as the weakest monotone solution of a set of
equations.

Here we prove that such a solution exists and is unique.

Definition 86: MonoPredTx

We define MonoPredTx as the set of predicate transformers that are
monotone.

We range over predicate transformers with ptx, and over monotone predicate
transformers with mptx.

159

160 PROOFS I/O VERIFICATION APPROACH

Definition 87: WP

We define WP as the set of predicate transformers ptx that satisfy the
following equations and are monotone.

• ptx(let c in C, Q) = ptx(c, λv. ptx(C(v), Q))

• ptx(f(v), Q) = ptx(fc(f)(v), Q)

• ptx(bio(vo), Q) = λh. ∃vi, h′. h
bio(vo,vi)======⇒ h′ ∧Q(vi)(h′)

• ptx(v,Q) = Q(v)

Definition 88: ordering on PredTx

ptx1 ≤ ptx2 ⇐⇒ ∀c,Q, h. ptx1(c,Q)(h)⇒ ptx2(c,Q)(h)

You can think of this ordering as the subset ordering where we consider a
predicate transformer as a set of triples (c,Q, h).

Lemma 11

MonoPredTx,≤ is a complete lattice.

Proof. Choose arbitrary X ⊆ MonoPredTx. We have to prove that there is an
element in MonoPredTx that is the least upper bound of X (and that there is
a highest lower bound; proving this is analogous).

Construct the predicate transformer mptxl as follows:
mptxl(c,Q)(h) = ∃x ∈ X. x(c,Q)(h). You can think of it as the union of the
predicate transformers in X. mptxl is the least upper bound of X. mptxl is
monotone because every x in X is monotone.

UNIQUE WEAKEST PRECONDITION 161

Definition 89: F

We define a function F : PredTx→ PredTx.

• F(ptx)(let c in C, Q) = ptx(c, λv. ptx(C(v), Q))

• F(ptx)(f(v), Q) = ptx(fc(f)(v), Q)

• F(ptx)(bio(vo), Q) = λh.∃vi, h′. h
bio(vo,vi)======⇒ h′ ∧Q(vi)(h′)

• F(ptx)(v,Q) = Q(v)

Note that, if ptx is in MonoPredTx, then F(ptx) is in MonoPredTx.

Lemma 12

F is monotone in MonoPredTx, i.e. ∀mptx,mptx ′ ∈ MonoPredTx. mptx ≤
mptx ′ ⇒ F (mptx) ≤ F (mptx ′).

Proof. Choose arbitrary monotone predicate transformers mptx, mptx ′ such
that mptx ≤ mptx ′.

Choose arbitrary c,Q, h.

We have to prove that F(mptx)(c,Q)(h)⇒ F(mptx ′)(c,Q)(h).

Case analysis on c:

• c = let c′ in C. Follows from mptx ≤ mptx ′ and from monotonicity of
mptx.

• c = f(v). Follows from mptx ≤ mptx ′.

• c = bio(v). Follows directly from definition of F.

• c = v. Follows directly from definition of F.

Because Lemma 11 on the facing page and Lemma 12 we know F is a
monotone function on a complete lattice. Therefore we can apply

162 PROOFS I/O VERIFICATION APPROACH

Knaster-Tarski’s fixpoint theorem to obtain that F has a greatest fixpoint,
which equals the least upper bound of the postfixpoints1.

Definition 90: wp

We define wp as the least upper bound of the postfixpoints of F:

wp(c,Q)(h) = ∃mptx. (∀c′, Q′, h′.mptx(c′, Q′)(h′)⇒ F(mptx)(c′, Q′)(h′))
∧mptx(c,Q)(h)

Note that wp = F(wp).

Example: consider a function f that just calls itself, i.e. fc(f)() = f(). To show
that wp(f(), Q)(h) we must identify a mptx such that some properties hold as
defined in Definition 90. A good choice is mptx(c′, Q′)(h′) = (c′ = f()).

A.2 Safe implies trace simulation
Definition 91

The program trace no_io∞ is defined coinductively as follows: no_io∞ =
no_io · no_io∞

Definition 92

The program trace no_ion is defined inductively as follows:

• no_io0 = 〈〉

• no_ion+1 = no_io · no_ion

1Given a set S with a partial ordering ≤ and a function f : S → S, we call an element
e ∈ S a postfixpoint of f iff e ≤ f(e).

SAFE IMPLIES TRACE SIMULATION 163

Definition 93

We define finiteness of a program trace τ (written finite(τ)), inductively
as follows:

• finite(〈〉) = true

• finite(bio(vo, vi) · τ ′) = finite(τ ′)

• finite(no_io · τ ′) = finite(τ ′)

Lemma 13

∀τ. ¬finite(τ) ∧ ¬(∃n, τ ′, bio, vo, vi. τ = no_ion · bio(vo, vi) · τ ′) ⇒ τ =
no_io∞

Proof. Proof by coinduction. Case analysis on τ .

• τ = 〈〉. Cannot occur.

• τ = bio′(v′o, v′i) · τ ′′. Cannot occur.

• τ = no_io · τ ′′ for some τ ′′. Because of coinduction hypothesis:
τ ′′ = no_io∞. Therefore, τ = no_io · τ ′′ = no_io∞.

Lemma 14

∀τ. τ 6= no_io∞∧¬finite(τ)⇒ ∃n, τ ′, bio, vo, vi. τ = no_ion·bio(vo, vi)·τ ′

Proof. Proof by contradiction: suppose
¬∃n, τ ′, bio, vo, vi. τ = no_ion · bio(vo, vi) · τ ′.

Use Lemma 13 to obtain τ = no_io∞. Contradiction.

164 PROOFS I/O VERIFICATION APPROACH

Lemma 15

∀τ.
(∃n. τ = no_ion)∨
τ = no_io∞∨
∃n, bio, vo, vi, τ ′. τ = no_ion · bio(vo, vi) · τ ′

Proof. Because of axiom of excluded middle: finite(τ) ∨ ¬finite(τ).

• ¬finite(τ). Because of axiom of excluded middle:
τ = no_io∞ ∨ ¬τ = no_io∞.

– τ = no_io∞. Trivial.
– ¬τ = no_io∞. Apply Lemma 14 on the preceding page.

• finite(τ). Induction on finite(τ).

– τ = no_io · τ ′ for some τ ′. Case analysis on the induction hypothesis
∗ τ ′ = no_ion for some n. Then τ = no_ion+1.
∗ τ ′ = no_io∞. Trivial. (alternatively: prove by induction that
this case cannot occur)

∗ τ ′ = no_ion · bio(vo, vi) · τ ′′ for some n, bio, vo, vi, τ ′′.
Then τ = no_ion+1 · bio(vo, vi) · τ ′′.

– τ = bio(vo, vi) · τ ′ for some bio, vo, vi, τ ′. Trivial.
– τ = 〈〉. Trivial.

Lemma 16

∀n, bio, vo, vi, P. safe(h,no_ion · bio(vo, vi) · τ ′, P) ⇒ safe(h, bio(vo, vi) ·
τ ′, P)

Proof. Proof by induction on n.

SAFE IMPLIES TRACE SIMULATION 165

Definition 94

The Petri net trace εm is defined inductively as follows:

• εm = 〈〉

• εm+1 = ε · εm

Definition 95

We define h εm

−−→ h′ inductively as follows:

• h
ε0−→ h

• h1
εm+1

−−−→ h3 = ∃h2. h1
ε−→ h2 ∧ h2

εm

−−→ h3

One can prove easily that if h ε−→
∗
h′, we can identify an m such that h εm

−−→ h′.

166 PROOFS I/O VERIFICATION APPROACH

Definition 96

Given some h, τ, P such that safe(h, τ, P), then we define topetri(τ)
corecursively as follows.

Because of Lemma 15 on page 164 we can perform the following case
analysis.

• τ = no_ion for some n. Then topetri(τ) = 〈〉.

• τ = no_io∞. Then topetri(τ) = 〈〉.

• τ = no_ion · bio(vo, vi) · τ ′ for some n, bio, vo, vi, τ ′.
Apply Lemma 16 on page 164 to obtain safe(h, bio(vo, vi) · τ ′, P), on
which we perform case analysis:

– SafeBio. Because of the premise of this inference rule:
h

bio(vo,vi)======⇒ h′ and safe(h′, τ ′, P) for some h′.

Because h bio(vo,vi)======⇒ h′ we know that h εm

−−→ h′′ and h′′ bio(vo,vi)−−−−−−→
h′ for a certain m and h′′.
topetri(τ) = εm · bio(vo, vi) · topetri(τ ′).

– SafeContradict. Because of the premise of this inference rule:
h

bio(vo,v
′
i)======⇒ h′ for some v′i, h′.

Because h
bio(vo,v

′
i)======⇒ h′ we know that h εm

−−→ h′′ and h′′ bio(vo,v
′
i)−−−−−−→

h′ for a certain m and h′′.
topetri(τ) = εm · bio(vo, v′i) · 〈〉.

– SafeNoIO. This case cannot occur.
– SafePost. This case cannot occur.

Lemma 17

∀h1, h2, h3, bio, vo, vi,m,T.
h1

εm

−−→ h2 ∧ h2
bio(vo,vi)−−−−−−→ h3 ∧ h3 ⇓ T⇒

h1 ⇓ εm · bio(vo, vi) · T

Proof. Proof by induction on m (use m times the Epsilon inference rule and
one time the Bio inference rule of Fig. 3.3 on page 40).

SAFE IMPLIES TRACE SIMULATION 167

Lemma 18

∀h, τ, P,T. safe(h, τ, P) ∧ T = topetri(τ)⇒ h ⇓ T

Proof. Proof by coinduction.

Case analysis by using Lemma 15 on page 164.

• τ = no_ion for some n. Then T = 〈〉. Trivial.

• τ = no_io∞. Then T = 〈〉. Trivial.

• τ = no_ion · bio(vo, vi) · τ ′ for some n, bio, vo, vi, τ ′.
Apply Lemma 16 on page 164 to obtain safe(h, bio(vo, vi) · τ ′, P), on
which we perform case analysis:

– SafeBio.
Because of the premise of this inference rule: h bio(vo,vi)======⇒ h′ and
safe(h′, τ ′, P) for some h′.

Because h bio(vo,vi)======⇒ h′ we know that h εm

−−→ h′′ and h′′ bio(vo,vi)−−−−−−→ h′

for a certain m and h′′.
By Definition 96 on the facing page: T = εm · bio(vo, vi) · topetri(τ ′).
Let T′ = topetri(τ ′).
Because of the coinductive hypothesis: h′ ⇓ T′.
Use Lemma 17 on the preceding page: h ⇓ εm · bio(vo, vi) · T′ (note
that it is guarded because we always apply the Bio inference rule).
Rewrite to obtain h ⇓ T.

– SafeContradict.
Because of the premise of this inference rule: h

bio(vo,v
′
i)======⇒ h′ for some

v′i, h
′.

Because h
bio(vo,v

′
i)======⇒ h′ we know that h εm

−−→ h′′ and h′′ bio(vo,v
′
i)−−−−−−→ h′

for a certain m and h′′.
By definition of topetri: T = εm · bio(vo, v′i) · 〈〉.
Use Lemma 17 on the facing page (and h′ ⇓ 〈〉):
h ⇓ εm · bio(vo, v′i) · 〈〉. (note that it is guarded because we always
apply the Bio inference rule).
Rewrite to obtain h ⇓ T.

– SafeNoIO. This case cannot occur.

168 PROOFS I/O VERIFICATION APPROACH

– SafePost. This case cannot occur.

Lemma 19

∀h, τ, P,T. safe(h, τ, P) ∧ T = topetri(τ)⇒ T ∼ τ .

Proof. Proof by coinduction.

Case analysis by using Lemma 15 on page 164.

• τ = no_ion for some n. T = 〈〉. What we want to prove follows easily
(apply n times the NoIO rule of Fig. 3.4 on page 41 and one time the
Empty rule).

• τ = no_io∞. Then T = 〈〉.
τ = no_io · no_io∞.
Because of the coinduction hypothesis: T ∼ no_io∞.
Apply the NoIO rule: T ∼ no_io · no_io∞.
Rewrite: T ∼ τ .

• τ = no_ion · bio(vo, vi) · τ ′ for some n, bio, vo, vi, τ ′.
Case analysis on n.

– n = 0.
Case analysis on safe(h, τ, P).

∗ SafeBio.
Because of the premise of this inference rule and because n = 0:
h

bio(vo,vi)======⇒ h′ and safe(h′, τ ′, P) for some h′.
Because h bio(vo,vi)======⇒ h′ we know that h εm

−−→ h′′ and
h′′

bio(vo,vi)−−−−−−→ h′ for a certain m and h′′.
By definition of topetri: T = εm · bio(vo, vi) · topetri(τ ′).
Let T′ = topetri(τ ′).
Because of the coinductive hypothesis: T′ ∼ τ ′.
Because of the Bio inference rule (Fig. 3.4 on page 41):
εm · bio(vo, vi) · T′ ∼ bio(vo, vi) · τ ′.
We can rewrite this to T ∼ τ .

WEAKEST PRECONDITION IMPLIES SAFE 169

∗ SafeContradict. Because of the premise of this inference rule,
and because n = 0: h

bio(vo,v
′
i)======⇒ h′ for some v′i, h′.

Because h
bio(vo,v

′
i)======⇒ h′ we know that h εm

−−→ h′′ and
h′′

bio(vo,v
′
i)−−−−−−→ h′ for a certain m and h′′.

By definition: T = εm · bio(vo, v′i) · 〈〉.
Because of the Contra inference rule (Fig. 3.4 on page 41):
εm · bio(vo, v′i) · 〈〉 ∼ bio(vo, vi) · τ ′.
We can rewrite this to T ∼ τ .

∗ SafeNoIO. This case cannot occur.
∗ SafePost. This case cannot occur.

– n > 0. Let τ2 = no_ion−1 · bio(vo, vi) · τ ′. Note that τ = no_io · τ2.
Because safe(h, τ, P): safe(h, τ2, P).
By definition of topetri: T = topetri(τ2).
The coinduction hypothesis states that T ∼ τ2.
By applying the NoIO inference rule (Fig. 3.4 on page 41) we obtain
T ∼ τ .

Theorem 6

∀h, τ, P. safe(h, τ, P)⇒ ∃T. h ⇓ T ∧ T ∼ τ

Proof. Let T = topetri(τ).

Because of Lemma 18 on page 167: h ⇓ T.

Because of Lemma 19 on the preceding page: T ∼ τ .

A.3 Weakest precondition implies safe
Lemma 20

∀h, τ1, τ2, P1, P2. (safe(h, τ1, P1) ∧ (∀h′. P1(h′)⇒ safe(h′, τ2, P2))
⇒ safe(h, τ1 · τ2, P2)

Proof. Proof by coinduction. Case analysis on safe(h, τ1, P1).

170 PROOFS I/O VERIFICATION APPROACH

• SafeBio.

In this case, h1
bio(vo,vi)======⇒ h2 and safe(h2, τ, P) for some h2, bio, vo, vi.

We want to apply the SafeBio inference rule to obtain safe(h1, τ1 · τ2, P),
so it suffices to prove safe(h2, τ1 · τ2). This follows from the coinduction
hypothesis.

• SafeNoIO, SafeContradict: similar.

• SafePost.
In this case, τ1 = 〈〉 and P1(h).
We also know ∀h′. P1(h′)⇒ safe(h′, τ2, P2) since it was given.
Using this together with P1(h) we know safe(h, τ2, P2).
Since τ1 = 〈〉 we obtain safe(h, τ1 · τ2, P2).

Theorem 7

∀c,Q, h, v, τ. c ⇓ τ, v ∧ dwp(c, dQe)e(h)⇒ safe(h, τ,Q(v))

Proof. Proof by coinduction. We perform (nested) induction on c.

• c = v′ for some v′.
Because c ⇓ τ, v we know τ = 〈〉 and v′ = v.
We have to prove dQe(v)(h).
This follows immediately from dwp(v′, dQe)e(h).

• c = let c1 in C for some c1, C.
Let Q1 = λv.wp(C(v), dQe).
Note that wp(c, dQe) = wp(c1,Q1).
Because c ⇓ τ, v we know τ = τ1 · τ2 and c1 ⇓ τ1, v1 and C(v1) ⇓ τ2, v for
some τ1, τ2, v1.
The induction hypothesis states that
∀h1. dwp(c1, dQ1e)e(h1)⇒ safe(h1, τ1, Q1(v1)) and
∀h2. dwp(C(v1), dQe)e(h2)⇒ safe(h2, τ2, Q(v)).
Because dwp(c, dQe)e(h) and wp(c, dQe) = wp(c1, Q1): dwp(c1, Q1)e(h).
Because wp is monotone: dwp(c1, dQ1e)e(h).

PROVEN HOARE TRIPLE IMPLIES WEAKEST PRECONDITION 171

Combined with the first part of the induction hypothesis we obtain:
safe(h, τ1, Q1(v1)).
Because of the second part of the induction hypothesis (note that
wp(C(v1), dQe)(h2) = Q1(v1)(h2)) we know that
∀h2. Q1(v1)(h2)⇒ safe(h2, τ2, Q(v)).
We now have all the ingredients to apply Lemma 20 on page 169 to
obtain safe(h, τ1 · τ2, Q(v)).

• c = bio(vo) for some bio, vo.
Because c ⇓ τ, v: τ = 〈bio(vo, v)〉.

Because dwp(c, dQe)e(h) there is some vi, h′ such that h bio(vo,vi)======⇒ h′ and
dQe(vi)(h′).
Case analysis on whether vi = v.

– vi = v.
Because dQe(vi)(h′) we know safe(h′, 〈〉, Q(v)).
Therefore safe(h, τ,Q(v)).

– vi 6= v. safe(h, τ,Q(v)) follows directly.

We have to prove safe(h, τ,Q(v)).

• c = f(v) for some f, v.
Becuase c ⇓ τ, v we know fc(f)(v) ⇓ τ1, v and τ = no_io · τ1 for some τ1.
Because dwp(f(v), dQe)e(h): dwp(fc(f)(v, dQe)e(h).
Use the SafeNoIO inference rule and the coinduction hypothesis to obtain
safe(c, τ,Q(v)).

A.4 Proven Hoare triple implies weakest
precondition

We split wp in two parts: one for commands (wpc) and one for functions (wpf).

We define the set of function predicate transformers. A function predicate
transformers returns a precondition given a program function, a list of
arguments, and a postcondition.

172 PROOFS I/O VERIFICATION APPROACH

Definition 97: FunPredTx

FunPredTx = FuncNames → Values∗ → (Values → P(Heaps)) →
P(Heaps)

We range over FunPredTx with ptf .

Definition 98: wpc

We define wpc(ptf , c,Q) by recursion on c:

• wpc(ptf , let c in C, Q) = wpc(ptf , c, λv.wpc(ptf , C(v), Q))

• wpc(ptf , f(v), Q) = ptf (f, v,Q)

• wpc(ptf , bio(vo), Q) = λh. ∃vi, h′. h
bio(vo,vi)======⇒ h′ ∧Q(vi)(h′)

• wpc(ptf , v,Q) = Q(v)

We write Q1 → Q2 to express that postcondition Q2 is weaker than Q2. More
formally:

Definition 99: Weaker postcondition

Q1 → Q2 ⇐⇒ ∀v, h. Q1(v)(h)⇒ Q2(v)(h)

We use the same notation to express a precondition is weaker than another:

Definition 100: Weaker precondition

P1 → P2 ⇐⇒ ∀h. P1(h)⇒ P2(h)

To define wpf , we use Knaster-Tarski’s fixpoint theorem. To do so, we define a
function on a complete lattice, and some helper definitions.

We define an ordering on FunPredTx:

PROVEN HOARE TRIPLE IMPLIES WEAKEST PRECONDITION 173

Definition 101

ptf1 ≤ ptf2 ⇔ ∀f, v,Q. ptf1 (f, v,Q)→ ptf2 (f, v,Q)

Definition 102: Monotonicity of function predicate transformers

We say a function predicate transformer ptf is monotone iff it allows
weakening the postcondition. In other words:

∀f, v,Q1, Q2. Q1 → Q2 ⇒ ptf (f, v,Q1)→ ptf (f, v,Q2).

Definition 103: MonoFunPredTx

We define MonoFunPredTx as the set of function predicate transformers
that are monotone.

Lemma 21

MonoFunPredTx is a complete lattice.

Proof. Similar to proof of Lemma 11 on page 160.

Definition 104: Ff

We define a function Ff : FunPredTx→ FunPredTx.

Ff(ptf) = λf, v,Q.wpc(ptf , fc(f)(v), Q)

Lemma 22

If ptf is monotone, then wpc(ptf) is monotone.

Proof. Proof by induction on c.

174 PROOFS I/O VERIFICATION APPROACH

Lemma 23

If ptf ∈ MonoFunPredTx, then Ff(ptf) ∈ MonoFunPredTx.

Proof. Use Lemma 22 on the preceding page.

Lemma 24

Ff is monotone in MonoFunPredTx, i.e. ∀ptf1 , ptf2 ∈ MonoFunPredTx. ptf1 ≤
ptf2 ⇒ Ff(ptf1) ≤ Ff(ptf2).

Proof. Given Ff(ptf1)(f, v,Q)(h) we have to prove Ff(ptf2)(f, v,Q)(h).

Because Ff(ptf1)(f, v,Q)(h): wpc(ptf1 , fc(f)(v), Q)(h).

Case analysis on fc(f)(v).

• fc(f)(v) = f ′(v′).
Because wpc(ptf1 , fc(f)(v), Q)(h): ptf1 (f ′, v′, Q)(h).
Because ptf1 ≤ ptf2 : ptf2 (f ′, v′, Q)(h)
Therefore: wpc(ptf2 , f ′(v′), Q)(h).
Rewrite: wpc(ptf2 , fc(f, v), Q)(h).
Therefore: Ff(ptf2 , f, v)(h).

• Other cases: follows directly from definition of Ff and wpc.

Now that we have a complete lattice and a monotone function Ff on that
lattice, we can use Knaster-Tarski to obtain that Ff has a unique greatest
fixpoint. We define wpf as this fixpoint:

Definition 105: wpf

We define wpf as the greatest fixpoint of Ff.

Note that Ff(wpf) = wpf .

Now that we have split up wp into wpc and wpf, we show that in order to
obtain wp(c,Q)(h), it suffices to obtain wpc(wpf, c,Q)(h).

PROVEN HOARE TRIPLE IMPLIES WEAKEST PRECONDITION 175

Lemma 25

∀c,Q. wpc(wpf, c,Q)→ wp(c,Q)

Proof. Choose arbitrary h such that wpc(wpf, c,Q)(h). According to
Definition 90 on page 162, we have to identify a ptx that satisfies some
properties. We choose ptx = wpc(wpf). We prove the following properties:

• wpc(wpf) must be monotone. This follows from Lemma 22 on page 173.
wpf is monotone because it is an element in MonoFunPredTx.

• (wpc(wpf))(c,Q)(h): given.

• ∀c′, Q′, h′. (wpc(wpf))(c′, Q′)(h′)⇒ F(wpc(wpf))(c′, Q′)(h′).
Note that we use F as defined in Definition 89 on page 161.
Case analysis on c′.

– c′ = f(v).
It suffices to show that (unfold F): (wpc(wpf))(fc(f)(v), Q′)(h′).
Because (wpc(wpf))(c′, Q′)(h′): wpf(f, v,Q′)(h′).
Because wpf = Ff(wpf): wpc(wpf, fc(f)(v), Q′)(h′).

– Other cases: follows directly from definition of wpc and F.

Definition 106

fr(Q, hF) = λv, h.∃h′. h = h′] hF ∧Q(v)(h′)

We define a new notation: P̊ is the set of heaps that satisfy the assertion P .

Definition 107

P̊ = (λh. h � P)

We use a similar notation for postconditions:

176 PROOFS I/O VERIFICATION APPROACH

Definition 108

Q̊ = (λv, h. h � Q(v))

We define a function predicate transformer that intuitively performs a lookup
in the table of user-written preconditions and postconditions (fC), instead of
looking at the body of the function.

Definition 109: prfptf

prfptf(f, v,Q) = λh.∃P ′, Q′, h′, hF .
h = h′] hF ∧ dP̊ ′e(h′) ∧ (P ′, Q′) ∈ fC(f)(v) ∧
(∀v, h′′. h′′ � Q′(v)⇒ Q(v)(h′′] hF))
∧ Q = dQe

Lemma 26

prfptf is monotone.

Proof. Follows easily from definition of prfptf.

Definition 110: wpcp

We define wpcp(ptf , c,Q) by recursion on c.

• wpcp(ptf , let c in C, Q) = wpcp(ptf , c, λv.wpcp(ptf , C(v), Q))

• wpcp(ptf , f(v), Q) = dptf (f, v, dQe)e

• wpcp(ptf , bio(vo), Q) = λh. ∃vi, h′. h
bio(vo,vi)======⇒ h′ ∧ dQ(vi)e(h′)

• wpcp(ptf , v,Q) = Q(v)

The difference between wpcp and wpc is that wpcp allows epsilon-steps after a
BIO while wpc does not, and wpcp allows epsilon steps before and after
function calls.

PROVEN HOARE TRIPLE IMPLIES WEAKEST PRECONDITION 177

Lemma 27: Monotonicity of wpcp

If a given ptf is monotone, then wpcp(ptf) is monotone. In other words:

∀ptf , c,Q1, Q2. ptf ∈ MonoFunPredTx ∧Q1 → Q2 ⇒ wpcp(ptf , c,Q1)→
wpcp(ptf , c,Q2)

Proof. Proof by induction on c.

Lemma 28

∀P, P ′. (P V P ′)⇒ (P̊ → dP̊ ′e)

Proof. Choose arbitrary h such that P̊ (h), i.e. h � P .

Induction on P V P ′.

• P → P ′. Trivial.

• P = P1 ∗R, P ′ = P ′1 ∗R, P1 V P ′1.
Because h � P there is some h1, hR such that h = h1] hR, h1 � P1, and
hR � R.
Because of the induction hypothesis: P̊1 → dP̊ ′1e.
Therefore: dP̊ ′1e(h1).

So there is some h′1 such that h1
ε−→
∗
h′1 and h′1 � P ′1.

So we also have h1] hR
ε−→
∗
h′1] hR and h′1] hR � P ′1 ∗R.

Therefore, d ˚P ′1 ∗Re(h1] hR), which we can rewrite to dP̊ ′e(h).

• P = token(t1) ∗ split(t1, t2, t3), P ′ = token(t2) ∗ token(t3).
Because h � P : h = {[token(t1), split(t1, t2, t3)]}
Let h′ = {[token(t2), token(t3)]}.

We know h
ε−→
∗
h′ and P̊ ′(h′).

Therefore dP̊ ′e(h).

• Other cases: similar.

178 PROOFS I/O VERIFICATION APPROACH

Lemma 29

∀Q,Q′, hF . Q→ Q′ ⇒ fr(dQe, hF)→ fr(dQ′e, hF)

Proof. Choose arbitrary v, h such that fr(dQe, hF)(v)(h).

By definition of fr there exists some hQ such that h = hQ] hF and dQe(v)(hQ).

Since Q→ Q′, we also know dQe → dQ′e.

Because of the latter and dQe(v)(hQ): dQ′e(v)(hQ).

By definition of fr: fr(dQ′e, hF)(v)(h)

Lemma 30

wpcp(prfptf, c, dQe)→ dwpcp(prfptf, c,Q)e

Proof. Induction on c. For each case, choose arbitrary h such that
wpcp(prfptf, c, dQe)(h).

• c = let c′ in C. It suffices to prove that
dwpcp(prfptf, c′, λv.wpcp(prfptf, C(v), Q))e(h).
Because wpcp(prfptf, c, dQe)(h):
wpcp(prfptf, c′, λv.wpcp(prfptf, C(v), dQe))(h).
Because of the first induction hypothesis, Lemma 27 on the preceding
page and Lemma 26 on page 176:
wpcp(prfptf, c′, dλv.wpcp(prfptf, C(v), Q)e)(h).
Because of the second induction hypothesis:
dwpcp(prfptf, c′, λv.wpcp(prfptf, C(v), Q))e(h).
Because of the definition of wpcp:
dwpcp(prfptf, c,Q)e(h).

• Other cases are trivial or follow immediately from the induction
hypothesis.

PROVEN HOARE TRIPLE IMPLIES WEAKEST PRECONDITION 179

Lemma 31

∀hR, hF , R,Q. hR � R∧ fr(dQ̊e, hR]hF)→ fr(dλv, h. h � Q(v) ∗Re, hF)

Proof. Choose arbitrary h, v such that fr(dQ̊e, hR] hF)(v)(h).

Therefore, there is some hQ such that h = hQ] hR] hF and dQ̊e(v)(hQ).

Because of the latter, there is some h′Q such that hQ
ε−→
∗
h′Q and h′Q � Q(v).

Therefore, h′Q] hR � Q(v) ∗R.

Also, hQ] hR
ε−→
∗
h′Q] hR

So, dλv, h. h � Q(v) ∗Re(v)(hQ] hR).

To show fr(dλv, h. h � Q(v) ∗Re, hF)(v)(h) we need to identify an h′′ such that
h = h′′] hF and dλv, h. h � Q(v) ∗Re(v)(h′′). This holds for
h′′ = hQ] hR.

Lemma 32

∀P, c,Q, h. `
{
P
}
c
{
Q
}
∧ h � P ⇒ ∀hF .

dwpcp(prfptf, c, fr(dQ̊e, hF))e(h] hF)

Proof. Proof by induction on `
{
P
}
c
{
Q
}
.

• Val, Disj, Bio and Exists proof rule. Trivial.

• Rewrite. P V P ′, ∀v. Q′(v)V Q(v) and `
{
P ′
}
c
{
Q′
}
for some P ′, Q′.

Choose arbitrary h, hF such that h � P (and therefore P̊ (h)).
Apply Lemma 28 on page 177 to obtain P̊ → dP̊ ′e.
So we also know dP̊ ′e(h) (and therefore h � P ′).

Therefore there is some h′ such that h ε−→
∗
h′ and h′ � P ′.

So we can apply the induction hypothesis to obtain
dwpcp(prfptf, c, fr(dQ̊′e, hF))e(h′] hF).

Because h ε−→
∗
h′ (and therefore h] hF

ε−→
∗
h′] hF) we also know

dwpcp(prfptf, c, fr(dQ̊′e, hF))e(h] hF).

180 PROOFS I/O VERIFICATION APPROACH

Now apply Lemma 28 on page 177 to obtain ∀v. Q̊(v)→ d ˚Q′(v)e.
So we also know Q̊→ dQ̊′e.
Apply Lemma 29 on page 178 to obtain fr(dQ̊e, hF)→ fr(dQ̊′e, hF).
Apply Lemma 27 on page 177 (and Lemma 26 on page 176) to obtain:
dwpcp(prfptf, c, fr(dQ̊e, hF))e(h] hF).

• App. Choose arbitrary hF . Because of the definition of wpcp, we have to
prove dprfptf(f, v, dfr(dQ̊e, hF)e)e(h] hF).
It is sufficient to prove that prfptf(f, v, dfr(dQ̊e, hF)e)(h] hF).
We have to identify a P ′, Q′, h′, h′F such that h] hF = h′] h′F and
dP̊ ′e(h′) and (P ′, Q′) ∈ fC(f)(v) and
(∀v, h′′. h′′ � Q′(v)⇒ dfr(dQ̊e, hF)e(v)(h′′] h′F)).
We choose P ′ = P,Q′ = Q, h′ = h, and h′F = hF . All conjuncts follow
immediately.

• Let. c = let c′ in C for some c′, C.
Choose arbitrary h such that h � P . Choose arbitrary hF .
The induction hypothesis states that

dwpcp(prfptf, c′, fr(dQ̊1e, hF))e(h] hF)

and

∀v, hQ. hQ � Q1(v)⇒ dwpcp(prfptf, C(v), fr(dQ̊e, hF))e(hQ] hF)

for some Q1.
It suffices to prove that
ddwpcp(prfptf, c′, λv.wpcp(prfptf, C(v), fr(dQ̊e, hF)))ee(h] hF).
Because of Lemma 30 on page 178 it suffices to prove that
dwpcp(prfptf, c′, dλv.wpcp(prfptf, C(v), fr(dQ̊e, hF))e)e(h] hF).
Because of the first part of the induction hypothesis, Lemma 27 on
page 177 and Lemma 26 on page 176, it suffices to prove that
fr(dQ̊1e, hF)→ dλv.wpcp(prfptf, C(v), fr(dQ̊e, hF))e.
Choose arbitrary h′, v such that fr(dQ̊1e, hF)(v)(h′). We want to show
dλv.wpcp(prfptf, C(v), fr(dQ̊e, hF))e(v)(h′).
Because fr(dQ̊1e, hF)(v)(h′) there is some h1, h2 such that h′ = h1] hF
and h1

ε−→
∗
h2 and h2 � Q1(v).

Because of the second part of the induction hypothesis:
dwpcp(prfptf, C(v), fr(dQ̊e, hF))e(h2] hF).

Because also h1] hF
ε−→
∗
h2] hF and h′ = h1] hF :

dwpcp(prfptf, C(v), fr(dQ̊e, hF))e(h′).

PROVEN HOARE TRIPLE IMPLIES WEAKEST PRECONDITION 181

• Frame. P = P ′ ∗R,Q = λv.Q′(v) ∗R for some P ′, Q′.
Choose arbitrary h such that h � P . Therefore, there is some h′P , hR
such that h = h′P] hR and h′P � P ′ and hR � R.
Choose arbitrary hF .
Because of the induction hypothesis:
dwpcp(prfptf, c, fr(dQ̊′e, hR] hF))e(h′P] (hR] hF)).
Because of Lemma 31 on page 179 we know
fr(dQ̊′e, hR] hF)→ fr(dλv, h. h � Q′(v) ∗Re, hF).
So we can use monotonicity of wpcp(prfptf) (Lemma 27 on page 177 and
Lemma 26 on page 176) to obtain:

dwpcp(prfptf, c, fr(dλv, h. h � Q′(v) ∗Re, hF))e(h′P] (hR] hF))

We can rewrite this to dwpcp(prfptf, c, fr(dQ̊e, hF))e(h] hF)

Lemma 33

∀c,Q. dwpcp(prfptf, c,Q)e → wpc(prfptf, c, dQe)

Proof. Induction on c.

• c = let c′ in C. The induction hypothesis states that

∀Q′. dwpcp(prfptft, c′, Q′)e → wpc(prfptf, c′, dQ′e)

and

∀Q′, v. dwpcp(prfptf, C(v), Q′)e → wpc(prfptf, C(v), dQ′e)

Choose arbitrary h such that dwpcp(prfptf, c,Q)e(h).
Because of the definition of wpcp:
dwpcp(prfptf, c′, λv.wpcp(prfptf, C(v), Q))e(h).
Because of the first part of the induction hypothesis:
wpc(prfptf, c′, λv. dwpcp(prfptf, C(v), Q)e)(h).
Because of the second part of the induction hypothesis, Lemma 22 on
page 173 and Lemma 26 on page 176:
wpc(prfptf, c′, λv.wpc(prfptf, C(v), dQe))(h).
Because of the definition of wpc: wpc(prfptf, c, dQe)(h).

182 PROOFS I/O VERIFICATION APPROACH

• Other cases: trivial.

Lemma 34

If all function bodies are proven, then prfptf ≤ F(prfptf)

Proof. Given prfptf(f, v,Q)(h) for some f, v,Q, h, we have to prove
wpc(prfptf, fc(f)(v), Q)(h).

Because prfptf(f, v,Q)(h) we know Q = dQe. So it suffices to prove that
wpc(prfptf, fc(f)(v), dQe)(h).

Because Lemma 33 on the previous page and because Q = dQe, it suffices to
prove that dwpcp(prfptf, fc(f)(v), dQe)e(h).

Because prfptf(f, v,Q)(h): There is some P ′, Q′, h′, hF such that h = h′] hF
and dP̊ ′e(h′) and (P ′, Q′) ∈ fC(f)(v) and

∀v, h′′. h′′ � Q′(v)⇒ Q(v)(h′′] hF) (A.1)

Because dP̊ ′e(h′) there is some hε such that h′ ε−→
∗
hε and P ′ � hε.

Because all function bodies are proven we can apply Lemma 32 on page 179 to
obtain
dwpcp(prfptf, fc(f)(v), fr(dQ̊′e, hF)e(hε] hF).

Therefore, dwpcp(prfptf, fc(f)(v), fr(dQ̊′e, hF)e(h).

Because of monotonicity of wpcp(prfptf) (Lemma 27 on page 177 and
Lemma 26 on page 176) it suffices to prove that
∀v, h′′. fr(dQ̊′e, hF)(v)(h′′)⇒ dQe(v)(h′′).

Choose arbitrary v, h′′ such that fr(dQ̊′e, hF)(v)(h′′).

Because fr(dQ̊′e, hF)(v)(h′′): there is some h1, h2 such that
h′′ = h1] hF ∧ h1

ε−→
∗
h2 ∧ h2 � Q′(v).

Because (A.1): Q(v)(h2] hF).

Because h1
ε−→
∗
h2: h1] hF

ε−→
∗
h2] hF and hence dQe(h1] hF).

Therefore, dQe(h′′).

PROVEN HOARE TRIPLE IMPLIES WEAKEST PRECONDITION 183

Lemma 35

If all function bodies are proven, then prfptf ≤ wpf

Proof. wpf is the greatest fixpoint of F. We use Knaster-Tarski to obtain that
wpf is equal to the least upper bound of the postfixpoints of F.

According to Lemma 34 on the preceding page, ptrptf is a postfixpoint of F, so
prfptf ≤ wpf.

Theorem 8

If all function bodies are proven, then

∀P, c,Q, h. `
{
P
}
c
{
Q
}
∧ h � P ⇒

⌈
wp(c,

⌈
λv, h′. h′ � Q(v)

⌉
)
⌉
(h)

Proof. Because of Lemma 25 on page 175 it suffices to prove that
dwpc(wpf, c, dQ̊e)e(h).

Because of Lemma 32 on page 179 we know dwpcp(prfptf, c, dQ̊e)e(h).

Apply Lemma 33 on page 181 to obtain dwpc(prfptf, c, dQ̊e)e(h).

Because of Lemma 35 and the definition of wpc we know
dwpc(wpf, c, dQ̊e)e(h).

Appendix B

Proofs in-memory I/O

B.1 Soundness proof in-memory I/O

Lemma 36: Safe interleaving

∀hA, τA, QA, hB , τB , QB ,Λ, I.
safe(Λ, hA, τA, I, QA) ∧
safe(Λ, hB , τB , I, QB) ∧
τ ∈ τA || τB ⇒
safe(Λ, hA] hB , τ, I,QA ∗QB).

Proof. We perform well-founded induction on Λ. The induction hypothesis
states

∀Λ′ < Λ. ∀hA, τA, QA, hB , τB , QB .
safe(Λ′, hA, τA, I, QA) ∧
safe(Λ′, hB , τB , I, QB) ∧
τ ∈ τA || τB ⇒
safe(Λ′, hA] hB , τ, I,QA ∗QB).

We have to prove safe(Λ, hA] hB , τ, I,QA ∗QB).

Choose arbitrary Λ′ ≤ Λ. We want to prove safe′(Λ′, hA] hB , τ, I,QA ∗QB).
Assume Λ′.I > 0 (the case Λ′.I = 0 is trivial).

We perform case analysis on τ .

185

186 PROOFS IN-MEMORY I/O

• τ = ε.
Then τA = τB = ε.
Because of safe′(Λ′, hA, ε, I,QA) we know
hA = hrA] hQA ∧ hQA �FΛ′ QA for some hrA, hQA.
Analogous, hB = hrB] hQB ∧ hQB �FΛ′ QB for some hrB , hQB .
Let hr = hrA] hrB .
Let hQ = hQA] hQB .
Combining hA = hrA] hQA and hB = hrB] hQB we obtain
hA] hB = hrA] hQA] hrB] hQB = hr] hQ (which we want to prove).
hQ �FΛ′ QA ∗QB (which we want to prove) because hQA �FΛ′ QA and
hQB �FΛ′ QB .

• τ = (h1,⊥) · τ ′ for some h1, τ
′.

This case does not occur because then ¬safe′(Λ′, hA, τA, I, QA) or
¬safe′(Λ′, hB , τB , I, QB) (remember Λ′.I 6= 0).

• τ = (h1, h2) · τ ′ for some h1, h2, τ
′.

Assume τA = (h1, h2) · τ ′A for some τ ′A (the other case is analogous).
Choose arbitrary hr, hI such that
h1 = erat((hA] hB)] hI] hr) ∧ hI �FΛ′ ~inv(hA] hB] hI] hr, I).
Let hrA = hB] hr.
Then h1 = erat(hA] hI] hrA).
Combining this with safe′(Λ′, hA, τA, I, QA) we know there exists some
h′A, h

′
I such that h2 = erat(h′A] h′I] hrA), and

h′I �FΛ′ ~inv(h′A] h′I] hrA, I) and
I = inat⇒ inv((hA] hB)] hI] hr, outat) = inv(h′A] h′I] hrA, outat)
(which we all three want to prove) and safe(Λ′ −I 1, h′A, τ ′A, I, QA).
Let h′ = h′A] hB .
Then we have the following equality (which we wanted to prove):
h2 = erat(h′A] h′I] hrA) (obtained earlier)
= erat(h′A] h′I] hr] hB) (by definition of hrA)
= erat(h′] h′I] hr) (by definition of h′).
Next we need to prove safe(Λ′ −I 1, h′, τ ′, I, QA ∗QB).
We already know safe(Λ′ −I 1, h′A, τ ′A, I, QA). We also know
safe(Λ, hB , τB , I, QB) and therefore safe(Λ′ −I 1, hB , τB , I, QB) (use
Λ′ −I 1 < Λ). Now we can apply the induction hypothesis.

• τ = (h1, inf) · τ ′ for some h1, τ
′. This case follows directly from the

definition of safe′.

SOUNDNESS PROOF IN-MEMORY I/O 187

Lemma 37: Safe seq

∀Λ, h, τA, I, Q1, Q2.(
safe(Λ, h, τA, I, Q1) ∧ (∀Λ.∀hQ.hQ �Fm

Q1 ⇒ safe(Λ, hQ, τB , I, Q2)
)

⇒ safe(Λ, h, τA; τB , I, Q2).

Proof. Choose arbitrary Λ, I. We perform well-founded induction on Λ. The
induction hypothesis states that

∀Λ′ < Λ.
∀h, τA, Q1, Q2.
safe(Λ′, h, τA, I, Q1) ∧

(
∀Λ.∀hQ. hQ �Fm

Q1 ⇒ safe(Λ, hQ, τB , I, Q2)
)

⇒ safe(Λ′, h, τA; τB , I, Q2)

Given
safe(Λ, h, τA, I, Q1) (B.1)

and
∀Λ.∀hQ. hQ �Fm

Q1 ⇒ safe(Λ, hQ, τB , I, Q2) (B.2)

we want to prove safe(Λ, h, τA; τB , I, Q2).

Choose arbitrary Λ′ ≤ Λ. We want to prove safe′(Λ′, h, τA; τB , I, Q2). In case
Λ′ = (0, 0) this is trivial, so we assume Λ′ > (0, 0).

Let τC = τA; τB .

We perform case analysis on τA and τB .

• τA = (h1, h2) · τ ′A for some h1, h2, τ
′
A.

Therefore τC = (h1, h2) · (τ ′A; τB).
Choose arbitrary hr, hI such that h1 = erat(h] hI] hr) and
hI �FΛ′ ~inv(h] hI] hr, I).
Because (B.1) there is some h′, h′I such that h2 = erat(h′] h′I] hr) and
h′I �FΛ′ ~inv(h′] h′I] hr, I) and
I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat) (which we
all wanted to prove) and

safe(Λ′ −I 1, h′, τ ′A, I, Q1) (B.3)

188 PROOFS IN-MEMORY I/O

Using (B.3) and (B.2) we can apply the induction hypothesis to obtain
safe(Λ′ −I 1, h′, τ ′A; τB , I, Q1) (which we wanted to prove).

• τA = ε ∧ τB = (h1, h2) · τ ′B for some h1, h2, τ
′
B . Then τC = (h1, h2) · τ ′B .

Choose arbitrary hrC , hIC such that

h1 = erat(h] hIC] hrC) (B.4)

and hIC �FΛ′ ~inv(h] hIC] hrC , I).
Because (B.1) and τA = ε we know there is some hQA, hrA such that

h = hQA] hrA (B.5)

and
hQA �FΛ′ Q1 (B.6)

Because (B.2) and (B.6):

safe′(Λ′, hQA, τB , I, Q2) (B.7)

Let hrB = hrC] hrA and hIB = hIC .
We have:
h1 = erat(h] hIC] hrC) (because (B.4))
= erat((hQA] hrA)] hIC] hrC) (because (B.5))
= erat(hQA] hIC] hrB)
Similarly, out of hIC �FΛ′ ~inv(h] hIC] hrC , I) we can conclude
hIC �FΛ′ ~inv(hQA] hIC] hrB , I).
Combine this with (B.7) to obtain:
∃h′B , h′IB .
h2 = erat(h′B] h′IB] hrB)
∧ h′IB �FΛ′ ~inv(h′B] h′IB] hrB , I)
∧ safe(Λ′ −I 1, hQA, τB , I, Q2)
∧ I = inat⇒ inv(hQA] hIC] hrB , outat) = inv(h′B] h′IB] hrB , outat)
This conjunction is what we wanted to prove.

• τA = ε ∧ τB = ε. Therefore, τC = ε.
Because (B.1), τA = ε, and Λ′ > (0, 0) there exists some hQA, hrA such
that

h = hQA] hrA (B.8)

and
hQA �FΛ′ Q1 (B.9)

Because (B.2) and (B.9): safe′(Λ′, hQA, τB , I, Q2).

SOUNDNESS PROOF IN-MEMORY I/O 189

Combine this with τB = ε and the definition of safe′ to obtain that there
is some hQB , hrB such that

hQA = hQB] hrB (B.10)

and hQB �FΛ′ Q2 (we wanted to prove the latter).
Let hrC = hrA] hrB . Then:
h = hQA] hrA (given in (B.9))
= hQB] hrB] hrA (because of (B.10))
= hQB] hrC which we wanted to prove.

Lemma 38: Safe leak

∀Λ, h, τ, I,Q,R. safe(Λ, h, τ, I,Q ∗R)⇒ safe(Λ, h, τ, I,Q).

Proof. We perform well-founded induction on Λ. Choose arbitrary Λ′ ≤ Λ. We
have to prove safe′(Λ′, h, τ, I,Q). Assume Λ′ > (0, 0) (the case Λ′ = (0, 0) is
trivial). We perform case analysis on τ .

• τ = (h1, h2) · τ ′ for some h1, h2, τ
′.

Choose arbitrary hr, hI such that
h1 = erat(h] hI] hr) ∧ hI �FΛ′ ~inv(h] hI] hr, I).
Because safe′(Λ′, h, τ, I,Q ∗R): ∃h′, h′I . h2 = erat(h′] h′I] hr)
∧ h′I �FΛ′ ~inv(h′] h′I] hr, I) ∧ safe(Λ′ −I 1, h′, τ ′, I, Q ∗R)
∧ I = inat⇒ inv(h] hI] hR, outat) = inv(h′] h′I] hR, outat).
Apply the induction hypothesis to obtain safe(Λ′ −I 1, h′, τ ′, I, Q).

• τ = ε.
Because safe′(Λ′, h, τ, I,Q ∗R): ∃hr1, h′1. h = hr1] h′1 ∧ h′1 �FΛ′ Q ∗R.
Because h′1 �FΛ′ Q ∗R, we know
∃hQ, hR.hQ �FΛ′ Q ∧ hR �FΛ′ R ∧ h

′
1 = hQ] hR.

Let hr2 = hr1] hR. Let h′2 = hQ.
Then: h = hr2] h′2 (which we want to prove) because
h = hr1] h′1 = hr1] hR] hQ = hr2] h′2.

• τ = (h1, inf) · τ ′ for some τ ′: trivial.

190 PROOFS IN-MEMORY I/O

• τ = (h,⊥) · τ ′ for some h, τ ′.
This case does not occur because then ¬safe′(Λ′, h, τ, I,Q ∗R).

Lemma 39: Safe frame

∀Λ, h,Q,R, I, τ, hR.
safe(Λ, h, τ, I,Q) ∧ hR �FΛ R⇒ safe(Λ, h] hR, τ, I,Q ∗R)

Proof. Choose arbitrary Λ, I. We perform well-founded induction on Λ.
Choose arbitrary Λ′ ≤ Λ. We have to prove safe′(Λ′, h] hR, τ, I,Q ∗R). The
case Λ′ = (0, 0) is trivial. We perform case analysis on τ .

• τ = (h1, h2) · τ ′ for some h1, h2, τ
′.

Choose arbitrary hr, hI such that h1 = erat((h] hR)] hI] hr) and
hI �FΛ′ ~inv((h] hR)] hI] hr, I).
Because safe′(Λ′, h, τ, I,Q) there is some h′, h′I such that
h2 = erat(h′] h′I] (hR] hr)) and hI �FΛ′ ~inv(h′] h′I] (hR] hr), I)
and
I = inat⇒ inv(h]hI] (hr]hR), outat) = inv(h′]h′I] (hR]hr), outat)
and safe(Λ′ −I 1, h′, τ ′, I, Q).
Therefore, h2 = erat((h′] hR)] h′I] hr) and
hI �FΛ′ ~inv((h′] hR)] h′I] hr, I) and
I = inat⇒ inv((h]hR)]hI]hr, outat) = inv((h′]hR)]h′I]hr, outat)
(which we all three want to prove).
Because hR �FΛ R and Λ′ ≤ Λ, we know hR �FΛ′ R

We can now apply the induction hypothesis to obtain
safe(Λ′ −I 1, h′] hR, τ ′, I, Q ∗R).

• τ = ε.
Because of safe′(Λ′, h, τ, I,Q): ∃hr, hQ. h = hr] hQ ∧ hQ �FΛ′ Q.
Therefore, h] hR = hr] (hQ] hR) ∧ hQ] hR �FΛ′ Q ∗R.

SOUNDNESS PROOF IN-MEMORY I/O 191

Lemma 40: Safe conseq

∀Λ, h, τ, I,Q, P.
(P → Q)⇒
safe(Λ, h, τ, I, P)⇒
safe(Λ, h, τ, I,Q).

Proof. We perform well-founded induction on Λ. Choose arbitrary Λ′ ≤ Λ. We
have to prove safe′(Λ′, h, τ, I,Q). The case Λ′ = (0, 0) is trivial. We perform
case analysis on τ .

• τ = (h1, h2) · τ ′ for some h1, h2, τ
′.

Choose arbitrary hr, hI such that h1 = erat(h] hI] hr) and
hI �FΛ′ ~inv(h] hI] hr, I).
Because safe′(Λ′, h, τ, I, P): ∃h′, h′I . h2 = erat(h′] h′I] hr) and
hI �FΛ′ ~inv(h′] h′I] hr, I) and
I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat) (which we
all three wanted to prove) and safe(Λ′ −I 1, h, τ ′, I, P).
Because of the induction hypothesis: safe(Λ′ −I 1, h, τ ′, I, Q).

• τ = ε.
Because safe′(Λ′, h, τ, I, P): ∃h′, hr. h = h′] hr ∧ h′ �FΛ′ P .
Because P → Q: h′ �FΛ′ Q.

Lemma 41: Safe outcome

∀Λ, h1, τ, n, h2,Λ, Q, hr.
h1, τ → (n, h2)
∧ safe(Λ +inat n+inat 1, h, τ, inat, Q)
∧ h1 = erat(h] hr)
⇒
∃h′, hrr. h2 = erat(h′] hrr] hr)
∧ h′ �FΛ Q
∧ inv(h] hr, outat) = inv(h′] hrr] hr, outat).

Proof. We perform induction on n.

192 PROOFS IN-MEMORY I/O

• n = 0.
Because h1, τ → (n, h2) we know that τ = ε and h1 = h2.
Because safe(Λ +inat n+inat 1, h, τ, inat, Q) there is some h′, hrr such that
h = h′] hrr and h′ �FΛ Q. We wanted to prove the latter.
We know h1 = erat(h] hr). Replace h to obtain
h1 = h2 = erat(h′] hrr] hr) (which we wanted to prove).
Use h = h′] hrr to obtain inv(h] hr, outat) = inv(h′] hrr] hr, outat).

• n > 0. Case analysis on τ .

– τ = (h1, h
′
2) · τ ′ for some h′2, τ ′.

Because safe(Λ +inat n+inat 1, h, τ, inat, Q) and h1 = erat(h] hr):
there is some h′A, h′IA such that
h′2 = erat(h′A] h′IA] hr)
and h′IA �Λ+inatn inv(h′A] h′IA] hr, inat)
and safe(Λ +inat n, h

′
A, τ

′, inat, Q)
and inv(h] hr, outat) = inv(h′A] hr, outat).
Note that therefore h′IA = ∅.
Because h1, τ → (n, h2) and τ = (h1, h

′
2) · τ ′ we know

h′2, τ
′ → (n− 1, h2)

We now have all the requirements to apply the induction hypothesis.
– τ = ε. This case cannot happen because then h1, ε→ (n, h2) with
n > 0 (which is impossible).

– τ = (h1,⊥). Similarly, this case cannot happen.
– τ = (h1, inf). Similarly, this case cannot happen.

Lemma 42: Unsafe inat outcome

∀h1, τ, n, h,Q, hr. h1, τ → (n,⊥) ∧ h1 = h] hr ⇒
¬safe((0, n+ 1), h, τ, inat, Q).

Proof. We perform induction on n.

• n = 0. In that case τ = (h1,⊥) · τ ′ for some τ ′. What we want to prove
immediately follows from the definition of safe.

SOUNDNESS PROOF IN-MEMORY I/O 193

• n > 0.
Proof by contradiction: assume safe((0, n+ 1), h, τ, inat, Q).
We perform case analysis on τ .

– τ = ε. This case is not possible because h1, τ → (n,⊥).
– τ = (h1, h2) · τ ′ for some h2, τ

′.
Because safe((0, n+ 1), h, τ, inat, Q) there is some h′ such that
h2 = h′] hr and safe(n, h′, τ ′, inat, Q).
Because h1, τ → (n,⊥) and τ = (h1, h2) · τ ′ we know
h2, τ

′ → (n− 1,⊥).
Now apply the induction hypothesis to obtain
¬safe((0, n), h′, τ ′, inat, Q).
We have obtained a contradiction.

– τ = (h′1,⊥) · τ ′ for some h′1, τ ′.
This case cannot happen because n > 0 and h1, τ → (n,⊥).

– τ = (h′1, inf) · τ ′ for some h′1, τ ′.
This case cannot happen because h1, τ → (n,⊥).

Lemma 43: Hoare triple validity

∀P, c,Q, I. `
{
P
}
c
{
Q
}
I
⇒ |=

{
P
}
c
{
Q
}
I
.

Proof. We perform induction on `
{
P
}
c
{
Q
}
I
. For each case, choose arbitrary

Λ (we want to prove |=Λ {P} c{Q}
I
).

• Par proof rule. P = P1 ∗ P2, c = c1 || c2, and Q = Q1 ∗Q2 for some
P1, P2, c1, c2, Q1, Q2.
Choose arbitrary h, τ, v such that h �FΛ P1 ∗ P2 and c ⇓ τ, v.
Because of the Par rule of the step semantics, τ ∈ τ1 || τ2, c1 ⇓ τ1,_ and
c2 ⇓ τ2,_ for some τ1, τ2.
We want to prove safe(Λ, h, τ, I,Q).
Because h �FΛ P , there is some h1, h2 such that h1 �FΛ P1 and
h2 �FΛ P2.

194 PROOFS IN-MEMORY I/O

Because of the induction hypothesis, we know |=Λ {P1} c1 {Q1}, therefore
safe(Λ, h1, τ1, I, Q1).
Similarly, safe(Λ, h2, τ2, I, Q2).
We can now apply Lemma 1 on page 149 to obtain safe(Λ, h, τ, I,Q).

• LetR proof rule. c = let x := c1 in c2 for some x, c1, c2.
Because of the induction hypothesis:

|=
{
P
}
c1
{
Q′
}
I

(B.11)

for some Q′, and

∀v. |=
{
Q′[v/res]

}
c2[v/x]

{
Q
}
I

(B.12)

We have to prove |=Λ {P} c{Q}
I
.

Choose arbitrary h such that

h �FΛ P (B.13)

Choose arbitrary τ, v such that c ⇓ τ, v.
We have to prove safe(Λ, h, τ, I,Q[v/res]).
Because of the step rules: τ = τ1; τ2 and

c1 ⇓ τ1, v1 (B.14)

c2[v1/x] ⇓ τ2, v (B.15)

for some τ1, τ2, v1.
Because (B.11), (B.13), (B.14) we can conclude
safe(Λ, h, τ1, I, Q1[v1/res]).
Because (B.12) and (B.15) we know
∀hQ. hQ �FΛ Q

′[v1/res]⇒ safe(Λ, hQ, τ2, I, Q[v/res]).
We can now apply Lemma 2 on page 149.

• LetG proof rule. Analogous to LetR proof rule.

• Then proof rule. Follows from induction hypothesis.

• Else proof rule. Follows from induction hypothesis.

SOUNDNESS PROOF IN-MEMORY I/O 195

• Frame proof rule. P = P ′ ∗R, Q = Q′ ∗R for some P ′, Q′, R.
Choose arbitrary h such that h �FΛ P

′ ∗R. Therefore, there is some
hP , hR such that hP �FΛ P

′ and hR �FΛ R
′

Choose arbitrary τ, v such that c ⇓ τ, v.
Because of the induction hypothesis: safe(Λ, hP , τ, I,Q[v/res]).
Apply Lemma 4 on page 150 to obtain safe(Λ, h, τ, I, (Q′ ∗R)[v/res]).

• Mut proof rule. P = v1 7→ _, c = [v1] := v2, Q = v1 7→ v2 for some v1, v2.
Choose arbitrary h such that h �FΛ P .
Therefore, h = {[v1 7→ v0]} for some v0.
Choose arbitrary τ, v such that c ⇓ τ, v.
We want to prove safe(Λ, h, τ, I,Q).
Choose arbitrary Λ′ ≤ Λ. Assume Λ′ > (0, 0) (the case Λ′ = (0, 0) is
trivial).
Case analysis on c ⇓ τ, v.

– Mut rule of the step semantics.
τ = (hR] {[v1 7→ v′0]}, hR] {[v1 7→ v2]}) · ε for some v0, hR.
Choose arbitrary hI , hr such that
hR] {[v1 7→ v′0]} = erat(h] hI] hr) and hI �FΛ′ ~inv(h] hI] hr)
It follows that {[v1 7→ v′0]} = h (because of the definition of] for
heaps).
Let h′ = {[v1 7→ v2]} and h′I = hI .
It follows from rewriting equalities that
hR] {[v1 7→ v2]} = erat(h′] h′I] hr) and h′I �F ′Λ ~inv(h′] h′I] hr)
and I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat)
(which we all three wanted to prove).
safe(Λ′ −I 1, h′, ε, I,Q) follows immediately because of the definition
of safe′.

– MutErr step rule. τ = (h1,⊥) · ε for some h1.
It suffices to prove that there is no hI , hr such that
h1 = erat(h] hI] hr).
Prove by contradiction: assume such hI , hr exist.
Since h = {[v1 7→ v0]}: h1 = {[v1 7→ v0]}] erat(hI] hr).
This contradicts with the premise of the MutErr step rule, which
states that h1 does not have a heap cell with address v1.

196 PROOFS IN-MEMORY I/O

• Pa proof rule. P = pr(vid , v1), c = pa(vid , v2), Q = (v1 = v2), for some
vid , v1, v2.
Choose arbitrary h such that h �FΛ P .
Therefore, h = {[pr(vid , v1)]}.
Choose arbitrary τ, v such that c ⇓ τ, v.
We want to prove safe(Λ, h, τ, I,Q).
Choose arbitrary Λ′ ≤ Λ. Assume Λ′ > (0, 0) (the case Λ′ = (0, 0) is
trivial).
Case analysis on c ⇓ τ, v.

– Pa rule of the step semantics.
τ = (hR] {[pr(vid , v2)]}, hR] {[pr(vid , v2, assig)]}) · ε for some hR.
Choose arbitrary hI , hr such that
hR]{[pr(vid , v2)]} = erat(h]hI]hr) and hI �FΛ′ ~inv(h] hI] hr)
It follows that {[pr(vid , v2)]} = h (because of the definition of] for
heaps).
Therefore, v1 = v2.
Let h′ = {[pr(vid , v2, assig)]} and h′I = hI .
It follows from rewriting equalities that
hR] {[pr(vid , v2, assig)]} = erat(h′] h′I] hr) and
h′I �F ′Λ ~inv(h′] h′I] hr) and
I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat) (which
we all three wanted to prove).
safe(Λ′ −I 1, h′, ε, I,Q) follows immediately because of the definition
of safe′. Note that we use here that safe′ supports leaking.

– PaErr step rule. τ = (h1,⊥) · ε for some h1.
It suffices to prove that there is no hI , hr such that
h1 = erat(h] hI] hr).
Prove by contradiction: assume such hI , hr exist.
Since h = {[pr(vid , v1)]}: h1 = {[pr(vid , v1)]}] erat(hI] hr).
This contradicts with the premise of the PaErr step rule, which
states that h1 does not have an unassigned prophecy chunk cell with
ID vid .

• Leak proof rule.
Follows from Lemma 3 on page 150.

SOUNDNESS PROOF IN-MEMORY I/O 197

• Exists proof rule. P = ∃x.P ′ for some P ′.
Because of the induction hypothesis, ∀v. |=Λ {P ′[v/x]} c {Q}I .
Therefore,

∀v. ∀h. h �FΛ P
′[v/x]⇒ ∀τ, v.c ⇓ τ, v ⇒ safe(Λ, h, τ, I,Q) (B.16)

Choose arbitrary h such that h �FΛ ∃x.P ′. Because h �FΛ ∃x.P ′ we
know there is some v such that h �FΛ P

′[v/x]. Now we can apply (B.16).

• Conseq proof rule.
Given |=Λ {P ′} c {Q′}I , P → P ′, Q′ → Q. We want to prove
|=Λ {P} c {Q}I .
Choose arbitrary h, v, τ such that h �FΛ P and c ⇓ τ, v.
Because P → P ′ we know h �FΛ P

′.
Because |=Λ {P ′} c {Q′}I we know safe(Λ, h, τ, I,Q′).
Because of Lemma 5 on page 150, we know safe(Λ, h, τ, I,Q) (which we
wanted to prove).

• Exp proof rule.
P = emp, c = e, Q = (res = v), v = JeK for some e, v.
Choose arbitrary h such that h �FΛ P . Therefore, h = {[]}.
Choose arbitrary τ, v′ such that c ⇓ τ, v′. Because of the step rules:
v′ = v and τ = ε.
Choose arbitrary m′ ≤ m. We have to prove
safe′(m′, {[]}, ε, I, (res = v)[v/res]). In case m′ > 0, we have to identify an
hr, hQ such that {[]} = hr] hQ and hQ �FΛ′ v = v. This holds for
hr = hQ = {[]}.

• AppSimple proof rule. c = (λx; y. c′) (v1; v2) for some x, y, c′, v1, v2.
Choose arbitrary h, τ, v such that h �FΛ P and (λx; y. c′)(v1; v2) ⇓ τ, v.
Because of the App step rule: c′[v1/x][v2/y] ⇓ τ ′, v where τ = (ha, ha) · τ ′
for some ha, τ ′.
Because of |=Λ {P} c′[v1/x][v2/y] {Q}I we know
safe(Λ− 1, h, τ ′, I, Q[v/res]).
Choose arbitrary Λ′ ≤ Λ. We have to prove
safe′(Λ′, h, (ha, ha) · τ ′, I, Q[v/res]).
Choose arbitrary hr, hI such that
ha = erat(h] hI] hr) ∧ hI �FΛ′ ~inv(h] hI] hr, I).

198 PROOFS IN-MEMORY I/O

We have to come up with a h′, h′I such that ha = erat(h′] h′I] hr) (and
some other conditions which we will prove next). Let h′ = h and h′I = hI .
We have to prove that
I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat) which holds
trivially.
Next we need to prove h′I �FΛ ~inv(h′] hr, I) and
safe(Λ− 1, h′, τ ′, I, Q[v/res]), which we both obtained already above.

• Lookup proof rule. P = [π]v 7→ v′, c = [v], and
Q = (res = v′ ∗ [π]v 7→ v′) for some v, v′.
Choose arbitrary h such that h �FΛ P . Therefore, h = {[[π]v 7→ v′]}.
Choose arbitrary τ, vres such that c ⇓ τ, vres.
We perform case analysis on the step rule of c ⇓ τ, vres.

– LookupErr step rule. τ = (hl,⊥) · ε and (v 7→ _) /∈ hl for some hl.
We have to prove safe(Λ, h, (hl,⊥) · ε, I,Q[vres/res]).
Looking at the definition of safe′, we want to prove something for
arbitrary hr, hI where hl = erat(h] hI] hr).
Such an hr and hI do not exist since (v 7→ _) ∈ h while
(v 7→ _) /∈ hl.

– Lookup step rule. τ = (hl, hl) · ε, hl(v 7→ v′′) > 0 and vres = v′′ for
some v′′.
Choose arbitrary Λ′ ≤ Λ. We want to prove
safe′(Λ′, h, (hl, hl) · ε, I,Q[vres/res]). Assume Λ′ > (0, 0) (the case
Λ′ = (0, 0) is trivial).
Choose arbitrary hr, hI such that hl = erat(h] hI] hr) and
hI �FΛ′ ~inv(h] hI] hr, I).
We have to identify a h′, h′I such that hl = erat(h′] h′I] hr) and
h′I �FΛ′ ~inv(h′] h′I] hr, I) and
I = inat⇒ inv(h] hI] hr, outat) = inv(h′] h′I] hr, outat) (and
another property that we will prove next). This conjunction is
satisfied by choosing h′ = h, h′I = hI .
Next we need to prove safe(Λ′ −I 1, h, ε, I,Q[vres/res]).
In case Λ′ −I 1 > 0, we have to identify a h′r, hQ such that
h = h′r] hQ ∧ hQ �FΛ′−I 1 Q[vres/res]. This is satisfied by choosing
h′r = {[]}, hQ = h.

• Cons proof rule. c = cons(v),
Q = res 7→ v0 ∗ res + 1 7→ v1 ∗ . . . ∗ res + k 7→ vk, v = v0, v1, . . . , vk, and
P = emp for some v, k, v0, v1, . . . , vk.

SOUNDNESS PROOF IN-MEMORY I/O 199

Choose arbitrary τ, v such that cons(v) ⇓ τ, v.
Because of the step rule:
τ = (hs, hs] h′s) · ε ∧ h′s = {[n 7→ v0, n+ 1 7→ v1, . . . , n+ k 7→ vk]} for
some n, hs, h′s.
Choose arbitrary Λ′ ≤ Λ.
We want to prove safe′(Λ′, {[]}, τ, I,Q[v/res]). Assume Λ′ > (0, 0) (the
case Λ′ = (0, 0) is trivial).
Choose arbitrary hr, hI such that
hs = erat({[]}] hI] hr) ∧ hI �FΛ′ ~inv({[]}] hI] hr, I).
We need to identify a h′, h′I such that
hs] h′s = erat(h′] h′I] hr) ∧ hI �FΛ′ ~inv(h′] h′I] hr, I) ∧ I = inat⇒
inv(h′] h′I] hr, outat) = inv(h′] h′I] hr, outat) (and another property
that we will prove next). This holds by choosing h′ = h′s and h′I = hI .
Next we have to prove safe(Λ′ −I 1, h′, ε, I,Q[v/res]). We need to identify
some h′r, h′′ such that h′ = h′r] h′′ ∧ h′′ �FΛ Q[v/res].
Let h′r = ∅ and h′′ = h′s.
h′′ �FΛ Q[v/res] holds because of the equalities of h′s and Q.
h′ = h′r] h′′ holds because:

h′= h′s (definition of h′)
= h′r] h′s (because h′r = ∅)
= h′r] h′′ (definition of h′′)

• Pc proof rule.
c = pc(), Q = ∃x.pr(res, x), and P = emp.
Choose arbitrary τ, vid such that cons(v) ⇓ τ, v.
Because of the step rule: τ = (hs, hs] h′s) · ε∧ h′s = {[pr(v, vpr)]} for some
hs, h

′
s, vid .

Choose arbitrary Λ′ ≤ Λ.
We want to prove safe′(Λ′, {[]}, τ, I,Q[v/res]). Assume Λ′ > (0, 0) (the
case Λ′ = (0, 0) is trivial).
Choose arbitrary hr, hI such that
hs = erat({[]}] hI] hr) ∧ hI �FΛ′ ~inv({[]}] hI] hr, I).
We need to identify a h′, h′I such that
hs] h′s = erat(h′] h′I] hr) ∧ hI �FΛ′ ~inv(h′] h′I] hr, I) ∧ I = inat⇒
inv(h′] h′I] hr, outat) = inv(h′] h′I] hr, outat) (and another property
that we will prove next). This holds by choosing h′ = h′s and h′I = hI .

200 PROOFS IN-MEMORY I/O

Next we have to prove safe(Λ′ −I 1, h′, ε, I,Q[v/res]). We need to identify
some h′r, h′′ such that h′ = h′r] h′′ ∧ h′′ �FΛ Q[v/res].
Let h′r = ∅ and h′′ = h′s.
h′′ �FΛ Q[v/res] holds: apply the Exists rule of Fig. 4.5 p. 110: now we
have to prove h′′ �FΛ pr(v, vpr), which holds because
h′′ = h′s = {[pr(v, vpr).
h′ = h′r] h′′ holds because:

h′= h′s (definition of h′)
= h′r] h′s (because h′r = ∅)
= h′r] h′′ (definition of h′′)

• Disj proof rule. P = P1 ∨ P2 for some P1, P2.
Choose arbitrary h such that h �Fm P .
Because P = P1 ∨ P2: h �FΛ P1 or h �FΛ P2. We perform case analysis
on this disjunction: assume h �FΛ P1 (the case h �FΛ P2 is analogous).
Choose arbitrary τ, v such that c ⇓ τ, v.
We have to prove safe(Λ, h, τ, I,Q[v/res]). This follows from
|=Λ {P1} c {Q}I (which we know because of the induction hypothesis).

• False proof rule. We have to prove |=Λ {false} c {Q}I . According to its
definition, we have to prove some property for all heaps h where
h �FΛ false. Such a heap h does not exist.

• Atom proof rule.
P = P ′ ∗ [π1] P1 ∗ . . . ∗ [πk] Pk ,
Q = Q′ ∗ [π1] P1 ∗ . . . ∗ [πk] Pk ,
c = 〈c′〉,
I = outat
for some P ′, P1, . . . , Pk, π1, . . . , πk, Q

′, Q1, . . . , Qk where
P1 6= P2 6= . . . 6= Pk.
Note that since the proof rules have the implicit side condition that the
precondition of the Hoare triple of the conclusion has no free variables,
we know res /∈ fv(P1 ∗ . . . ∗ Pk).

Choose arbitrary h such that h �FΛ P
′ ∗ [π1] P1 ∗ . . . ∗ [π2] Pk .

Therefore, there is some hP ′ such that hP ′ �FΛ′ P
′ and

h = hP ′] {[[π1] P1 , . . . , [πk] Pk]}.

Choose arbitrary τ, v such that 〈c′〉 ⇓ τ, v.

SOUNDNESS PROOF IN-MEMORY I/O 201

Choose arbitrary Λ′ ≤ Λ. We have to prove
safe′(Λ′, h, τ, outat, Q′[v/res] ∗ [π1] P1 ∗ . . . ∗ [πk] Pk).

Assume Λ′.outat > 0 (the case Λ′.outat = 0 is trivial).
We perform case analysis on 〈c′〉 ⇓ τ, v.

– Atom step rule.
Because of this step rule,
τ = (h1, h2) · ε for some h1, h2
and c′ ⇓ τ ′, v for some τ ′
and h1, τ

′ → (n, h2) for some n.
Choose arbitrary hI , hr such that
h1 = erat(h] hI] hr) ∧ hI �FΛ′ ~inv(h] hI] hr, outat).
Therefore
hI �FΛ′ P1 ∗ . . . ∗ Pk ∗~inv(h] hI] hr, outat) \ {P1, . . . , Pk}.
So there is some hP1k, hIR such that hP1k �FΛ′ P1 ∗ . . . ∗ Pk and

hIR �FΛ′ ~inv(h] hI] hr, outat) \ {P1, . . . , Pk} (B.17)

and hI = hP1k] hIR.
Let hB = hP ′] hP1k and hBr = {[[π1] P1 , . . . , [πk] Pk]}] hIR] hr.
Note that h1 = erat(hB] hBr).
Let ΛC = (Λ′.outat− 1,Λ′.inat).
Let ΛB = ΛC +inat (n+ 1).
Because of the induction hypothesis,
safe(ΛB , hB , τ ′, inat, Q′[v/res] ∗ P1 ∗ . . . ∗ Pk).
We can now apply Lemma 6 on page 150 to obtain that there is
some h′B , h′rr such that
h2 = erat(h′B] h′rr] ({[[π1] P1 , . . . , [πk] Pk]}] hIR] hr))
∧ h′B �FΛC

Q1[v/res] ∗ P1 ∗ . . . ∗ Pk
and

inv(hB] hBr, outat) = inv(h′B] h′rr] hBr, outat) (B.18)

Because h′B �FΛC
Q′[v/res] ∗ P1 ∗ . . . ∗ Pk there is some h′BQ, h′BP1k

such that h′B = hBQ] hBP1k and h′BQ �FΛC
Q′[v/res] and

h′BP1k �FΛC
P1 ∗ . . . ∗ Pk (B.19)

Let h′ = h′BQ] h′rr] {[[π1] P1 ∗ . . . ∗ [πk] Pk]}.
Let h′I = hIR] h′BP1k.

202 PROOFS IN-MEMORY I/O

We have:
h2 = erat(h′B] hrr] {[[π1] P1 ∗ . . . ∗ [πk] Pk]}] hIR] hr)
= erat((h′BQ] h′BP1k)] hrr] {[[π1] P1 ∗ . . . ∗ [πk] Pk]}] hIR] hr)
= erat((h′BQ] hrr] {[[π1] P1 ∗ . . . ∗ [πk] Pk]})] (h′BP1k] hIR)] hr)
= erat(h′] h′I] hr) (which we wanted to prove).
We also have

inv((h)] (hI)] hr) = inv(h′] h′I] hr) (B.20)

because
inv((h)] (hI)] hr)
= inv((hP ′)] (hP1k] hIR)] hr)
= inv((hP ′] hP1k)] (hIR] hr))
= inv(hB] hBr)
= inv(h′B] hBr] h′rr) (because of (B.18))
= inv((h′BQ] h′BP1k)] (hIR] hr] {[[π1] P1 ∗ . . . ∗ [πk] Pk]})] h′rr)
= inv((h′BQ] {[[π1] P1 ∗ . . . ∗ [πk] Pk]}] h′rr)] (h′BP1k] hIR)] hr)
= inv(h′] h′I] hr) .
Because (B.17) and ΛC < Λ′:
hIR �FΛC

~inv(h] hI] hr, outat) \ {P1, . . . , Pk}.
Rewrite using (B.20):
hIR �FΛC

~inv(h′] h′I] hr, outat) \ {P1, . . . , Pk}.
Combined with (B.19) and {P1, . . . , Pk} ⊆ inv(h′] h′I] hr, outat)
we obtain: h′I = hIR] h′BP1k �FΛC

~inv(h′] h′I] hr, outat) (which
we wanted to prove).

– AtomErr step rule. This case cannot happen. In this case,
h1, τ → (n,⊥) for some n. Apply Lemma 7 on page 151 to obtain
¬safe((0, n+ 1), h, τ, inat, Q). This contradicts with the induction
hypothesis.

– AtomInf step rule. Follows from definition of safe′ (note that
because of the step rule we know τ = (h1, inf) · ε).

• AtIntro proof rule.
Choose arbitrary h such that h �FΛ P .
Choose arbitrary τ, v such that atintro ⇓ τ, v.
Therefore, τ = (h1, h1) · ε for some h1.
Choose arbitrary Λ′ ≤ Λ. We have to prove safe′(Λ′, h, τ, outat, Q).
Assume Λ′.outat > 0 (the case Λ′.outat = 0 is trivial).
Choose arbitrary hI , hr such that

SOUNDNESS PROOF IN-MEMORY I/O 203

h1 = erat(h] hI] hr) and
hI �FΛ′ ~inv(h] hI] hr, outat).

Let h′I = hI] h and h′ = {[P]}.

h1 = erat(h] hI] hr)

= erat(h′I] hr)

= erat(h′] h′I] hr)

Remember hI �FΛ′ ~inv(h] hI] hr, outat)
Therefore: h] hI �FΛ′ P ∗~inv(h] hI] hr, outat)
Therefore: h′I �FΛ′ P ∗~inv(h] hI] hr, outat)
Therefore: h′I �FΛ′ ~inv({[P]}] h] hI] hr, outat)
Therefore: h′I �FΛ′ ~inv(h′] h′I] hr, outat)
We also have to prove safe(Λ′ −outat 1, h′, ε, outat, Q).
Choose arbitrary Λ′′ ≤ Λ′ −outat 1.
We have to prove safe′(Λ′′, h′, ε, outat, Q). Assume we are not in the
trivial case Λ′′.outat = 0.
Remember Q = P . We have to identify a hQ, hr such that h′ = hQ] hr
and hQ �FΛ′′ Q. This holds by choosing hQ = h and hr = ∅.

• AtDel proof rule. P = P ′ , Q = P ′, I = outat, c = atdel.
Note that since the proof rules have the implicit side condition that the
precondition of the Hoare triple of the conclusion has no free variables,
we know res /∈ fv(P ′).

Choose arbitrary h such that h �FΛ P ′ .
Choose arbitrary τ, v such that c ⇓ τ, v.
We have to prove safe(Λ, h, τ, I,Q[v/res]).
Because c = atdel: τ = (h1, h1) · ε for some h1, and v = unit.
Choose arbitrary Λ′ ≤ Λ.
Choose arbitrary hr, hI such that h1 = erat(h] hI] hr) and
hI �FΛ′ ~inv(h] hI] hr, outat).

Because of the latter and because h = {[P ′]}:
hI �F ′Λ P

′ ∗~inv(hI] hr, outat).
Therefore, there is some h′, h′I such that hI = h′] h′I , h′ �F ′Λ P

′, and
h′I �F ′Λ ~inv(hI] hr, outat).

204 PROOFS IN-MEMORY I/O

Rewrite hI in the latter to obtain h′I �F ′Λ ~inv(h′] h′I] hr, outat),
which we wanted to prove.

Remember h1 = erat(h] hI] hr). Because h = {[P ′]}:
h1 = erat(hI] hr).
Because hI = h′] h′I : h1 = erat(h′] h′I] hr).
We also have to prove that safe(Λ′ −I 1, h′, ε, I,Q). Choose arbitrary
Λ′′ ≤ Λ′ −I 1.
Let hQ = h′ and hrQ = ∅.
We have to prove that h′ = hQ] hrQ and hQ �FΛ′′ Q. The former is
trivial. For the latter use that Q = P ′ and that h′ �FΛ′ P

′.

• CreateGcf, GcfCons, and GcfMut proof rule. Follows directly from
definitions.

• FVI proof rule.
P = emp,
c = λxr; yg. c′,
Q =

(
res = λxr; yg. c ∗ (

{
P ′
}

(λxr; yg. c′)(xr; yg)
{
Q′
}l
I
)
)

for some xr, yg, c′, Q′, l.
Let z = fv(P ′ ∗Q′) \ (x ∪ y)
The induction hypothesis states that ∀v1, v2, v3, |={
P ′[v1/x][v2/y][v3/z]

}
c′[v1/x][v2/y]

{
Q′[v1/x][v2/y][v3/z]

}l
I
.

Choose arbitrary h such that h �FΛ P . Choose arbitrary τ, v such that
c ⇓ τ, v. It follows that h = {[]}, τ = ε, v = c.
Choose arbitrary Λ′ ≤ Λ.
We have to prove that safe′(Λ′, {[]}, ε, I,Q[c/res]).
In order to do so, we we have to identify an hQ, hr such that
{[]} = hQ] hr and hQ �FΛ′ Q[c/res].
Let hQ = hr = {[]}. We have to prove {[]} �FΛ′ Q[c/res], i.e.
{[]} �FΛ′ c = c ∗ (

{
P ′
}
c(x; y)

{
Q′
}l
I
).

It suffices to prove
{
P ′
}

(λxr; yg. c′)(xr; yg)
{
Q′
}l
I
∈ FΛ′ .

Therefore, it suffices to prove ∀v1, v2, v3,Λ′′. Λ′′ < Λ′ ⇒|=Λ′′{
P ′[v1/x][v2/y][v3/z]

}
c′[v1/x][v2/y]

{
Q′[v1/x][v2/y][v3/z]

}
I
. This

follows from the induction hypothesis.

• FVA proof rule.
P = P ′[v1/xr][v2/yg][v3/z] ∗ (

{
P ′
}
v(xr; yg)

{
Q′
}l
I
),

SOUNDNESS PROOF IN-MEMORY I/O 205

c = v(v1; v2),
Q = Q′[v1/xr][v2/yg][v3/z] ∗ (

{
P ′
}
v(xr; yg)

{
Q′
}l
I
)

z = fv(P ′ ∗Q′) \ (x ∪ y)
for some P ′, v1, v2, v3, xr, yg, v, Q′.
Choose arbitrary h such that h �FΛ P . Choose arbitrary τ, v′ such that
c ⇓ τ, v′.
Choose arbitrary Λ′ ≤ Λ.
We have to prove safe′(Λ′, h, τ, I,Q[v′/res]).
Assume Λ′.I > 0 (the case Λ′.I = 0 is trivial).
Because h �FΛ P there is some hP , hH such that h = hP] hH and
hP �FΛ P

′[v1/xr][v2/yg][v3/z] and hH �FΛ

{
P ′
}
v(x; y)

{
Q′
}l
I
.

Because of the latter:
{
P ′
}
v(x; y)

{
Q′
}l
I
∈ FΛ.

Therefore:
v = λx; y. c′ (B.21)

(for some c′) and

|=Λ−I1 {P ′[v1/x][v2/y][v3/z]
}
c′[v1/x][v2/y]

{
Q′[v1/x][v2/y][v3/z]

}
I

(B.22)
Because c ⇓ τ, v′ and c = v(v1; v2) and (B.21), we know τ = (h1, h1) · τ ′
for some h1, τ

′.
Choose arbitrary hr, hI such that h1 = erat(h] hI] h2) and
hI �FΛ′ ~inv(h] hI] hr, I).
It suffices to prove that safe(Λ′ −I 1, h, τ ′, I, Q[v′/res]).
Because (λx; y. c′)(v1; v2) ⇓ τ, v′ and τ = (h1, h1) · τ ′, the step rules give
us that c′[v1/x][v2/y] ⇓ τ ′, v′.
Combined with hP �FΛ P

′[v1/xr][v2/yg][v3/z] and (B.22) we obtain:
safe(Λ−I 1, hP , τ ′, I, Q′[v1/xr][v2/yg][v3/z][v′/res]).

Combine with hH �FΛ−I 1

{
P ′
}
v(x; y)

{
Q′
}l
I
(because

hH �FΛ

{
P ′
}
v x; y

{
Q′
}l
I
) and Lemma 4 on page 150 to obtain:

safe(Λ−I 1, h, τ ′, I, Q[v′/res]), which we wanted to prove.

Lemma 44: Unsafe outcome

∀h, τ,Q. ¬OK(τ)⇒ ∃Λ.¬safe(Λ, ∅, τ, outat, emp)

206 PROOFS IN-MEMORY I/O

Proof. Because ¬OK(τ) we know there is some n such that ∅, τ → (n,⊥).

It suffices to prove
∀n, h, hR, τ. erat(h)] hR, τ → (n,⊥)⇒ ¬safe′((n+ 1, 0), h, τ, outat, emp).

We prove this by induction on n.

• n = 0.
Because erat(h)] hR, τ → (0,⊥) there is some τ ′ such that
τ = (erat(h)] hR,⊥) · τ ′.
¬safe((1, 0), h, τ, outat, emp) then follows directly from the definition of
safe′.

• n > 0.
The induction hypothesis states that
∀h, hR, τ. erat(h)] hR, τ → (n− 1,⊥)⇒ ¬safe((n, 0), h, τ, outat, emp).
Proof by contradiction: assume

safe((n+ 1, 0), h, τ, outat, emp). (B.23)

Because erat(h)] hR, τ → (n,⊥) and n > 0, there is some h2, τ
′ such

that τ = (erat(h)] hR, h2) · τ ′.
Choose arbitrary hI , hr such that erat(h)] hR = erat(h] hI] hr) and
hI �F(n+1,0) ~inv(h] hI] hr, outat).
Because (B.23) there is some h′, h′I such that h2 = erat(h′] hI] hr) and
safe((n, 0), h′, τ, outat, emp).
Let h′R = erat(h′I] hr)
Note that h2 = erat(h′)] h′R and erat(h′)] h′R, τ → (n− 1,⊥).
Therefore we can apply the induction hypothesis to obtain
¬safe((n, 0), h′, τ, outat, emp).
We have reached a contradiction with (B.23).

Theorem 9: Soundness (in-memory)

∀c. `
{
emp

}
c
{
emp

}r
outat ⇒

∀τ, v. er(c) ⇓ τ, v ⇒
OK(τ)

RECURSION 207

Proof. Choose arbitrary c, τ, v such that `
{
emp

}
c
{
emp

}
outat ∧ er(c) ⇓ τ, v.

We want to prove that OK(τ).

Proof by contradiction: assume ¬OK(τ).

Because of Lemma 10 on page 151, we know that there is some τ ′, v′ such that
c ⇓ τ ′, v′ ∧ ¬OK(τ ′).

Because Lemma 9 on page 151: ∃Λ,Λ.¬safe(Λ, ∅, τ ′, ∅, emp).

Because of Lemma 8 on page 151: |= {P} c {Q}.

Using the definition of validity of a Hoare triple, we obtain:
∀Λ. safe(Λ, ∅, τ ′, ∅, emp).

We have reached a contradiction.

B.2 Recursion

We want to prove the derived inference rule of Fig. 4.15 p. 143, which we
repeat here for convenience:

∀v′x, v′y, v′z. `

P [v′x/x]
[v′y/y]
[v′z/z]
∗A(A)

 c[G, v′x/g, x][v′y/y]

Q[v′x/x]
[v′y/y]
[v′z/z]

l

I

A = λa.
{
g = G ∗ a(a) ∗ P

}
g(g, x; y)

{
Q
}l
I

z = fv(P ∗Q) \ (x ∪ y)
{g, a} ∩ z = ∅

res /∈ fv(P)
G = λg, x; y. c

Rec
`
{
emp

}
λx; y. let g = λg, x; y. c in g(g, x; y)

{{
P
}

res
{
Q
}l
I

}l
I

So given the premises, we want to prove
`
{
emp

}
λx; y. let g = λg, x; y. c in g(g, x; y)

{{
P
}

res
{
Q
}l
I

}l
I
.

208 PROOFS IN-MEMORY I/O

Apply the FVI proof rule (backwards). It suffices to prove

∀vx, vy, vz. `

P [vx/x]
[vy/y]
[vz/z]

 let g = λg, x; y. c in g(g, vx; vy)

Q[vx/x]
[vy/y]
[vz/z]

l

I

Here, z are the variables that are free in P and/or in Q, and furthermore are
different from x and y.

Note that A is a predicate value, and that A(A) is an assertion.

To gain better insight, let us study when A(A) is true for a heap, and see how
we do not get into an infinite loop when doing so.

Using the Pred inference rule of Fig. 4.5 on page 110, h �F A(A) is true if

h �F
{
g = G ∗A(A) ∗ P

}
g(g, x; y)

{
Q
}l
I

(B.24)

is true. To know when (B.24) is true, we can not use the Pred inference rule
another time, because now the assertion{

g = G ∗A(A) ∗ P
}
g(g, x; y)

{
Q
}l
I

(B.25)

is not a predicate value. So we do not get stuck into an infinite loop of
applying the Pred inference rule over and over.

The assertion (B.25) is a Hoare triple assertion, so (B.24) is true if{
g = G ∗A(A) ∗ P

}
g(g, x; y)

{
Q
}l
I
∈ F , according to the Fun inference rule

(see Fig. 4.12 p. 132).

Note that the assertion (B.25) contains a predicate value application (A(A)) in
the precondition of the Hoare triple assertion. This predicate value application
is an assertion itself: it is written in the syntax of the assertion language. One
can not apply it at the meta level.

Back to proving the derived inference rule. Choose arbitrary vx, vy, vz.

Let P ′ = P [vx/x][vy/y][vz/z].

Let Q′ = Q[vx/x][vy/y][vz/z].

We apply the Let proof rule (again backwards). We now have to prove

• `
{
P ′
}
λg, x; y. c

{
P ′ ∗ res = λg, x; y. c ∗A(A)

}l
I

Use the Frame rule. Now we have to prove
`
{
emp

}
λg, x; y. c

{
res = λg, x; y. c ∗A(A)

}l
I

Use the FVI rule. Now we have to prove

RECURSION 209

∀vg, v′x, v′y, v′z. `
P [vg, v′x/g, x]

[v′y/y]
[v′z/z]

∗ vg = G ∗A(A)

 c[vg, v′x/g, x][v′y/y]

Q[vg, v′x/g, x]

[v′y/y]
[v′z/z]

l

I

Remember that z are the free variables in P and/or Q that are not in x
and not in y.
We can simplify this (use that g is not a free variable in P and also not
in Q): ∀v′x, v′y, v′z. `{
A(A) ∗ P [v′x/x][v′y/y][v′z/z]

}
c[G, v′x/g, x][v′y/y]

{
Q[v′x/x][v′y/y][v′z/z]

}l
I

which is given.

• ∀vg. `
{
vg = G ∗ P ′ ∗A(A)

}
vg(vg, vx; vy)

{
Q′
}l
I

Choose arbitrary vg. If vg 6= G use the False proof rule. Otherwise, we
have to prove: `

{
G = G ∗ P ′ ∗A(A)

}
G(G, vx; vy)

{
Q′
}l
I

Rewrite this (use the Conseq rule):
`
{
G = G ∗ P ′ ∗A(A) ∗A(A)

}
G(G, vx; vy)

{
Q′
}l
I

Rewrite again: `(g = G ∗ P ∗A(A))[G, vx/g, x][vy/y][vz/z]
∗A(A)

G(G, vx; vy)

Q[G, vx/g, x]
[vy/y]
[vz/z]

l

I

Apply the FVA rule.

Bibliography

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey,
B. Ondrusek, S. K. Rajamani, and A. Ustuner. Thorough static analysis
of device drivers. SIGOPS Oper. Syst. Rev., 40(4):73–85, 2006.

[2] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and
H. Yang. Shape analysis for composite data structures. In CAV 2007,
volume 4590 of LNCS, pages 178–192, Heidelberg, 2007. Springer.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Execution with
Separation Logic, pages 52–68. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[4] J. Berdine, C. Calcagno, and P. O’hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In International Symposium on
Formal Methods for Components and Objects, pages 115–137. Springer,
2005.

[5] G. Beuster, N. Henrich, and M. Wagner. Real world verification –
Experiences from the Verisoft email client. In G. Sutcliffe, R. Schmidt, and
S. Schulz, editors, Proceedings of the FLoC’06 Workshop on Empirically
Successful Computerized Reasoning (ESCoR 2006), volume 192 of CEUR
Workshop Proceedings, pages 112–125. CEUR-WS.org, Aug. 2006.

[6] B. Bogaerts, J. Jansen, M. Bruynooghe, B. De Cat, J. Vennekens, and
M. Denecker. Simulating dynamic systems using linear time calculus
theories. Theory and Practice of Logic Programming, 14:477–492, 7 2014.

[7] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission
accouting in separation logic. In POPL, 2005.

[8] J. Boyland. Checking interference with fractional permissions. In
International Static Analysis Symposium, pages 55–72. Springer, 2003.

211

212 BIBLIOGRAPHY

[9] R. W. Butler and G. B. Finelli. The infeasibility of experimental
quantification of life-critical software reliability. SIGSOFT Softw. Eng.
Notes, 16(5):66–76, Sept. 1991.

[10] R. Calinescu and B. Rumpe, editors. Software Engineering and Formal
Methods - 13th International Conference, SEFM 2015, York, UK,
September 7-11, 2015. Proceedings, volume 9276 of Lecture Notes in
Computer Science. Springer, 2015.

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An empirical
study of operating system errors. In SOSP ’01, pages 73–88, New York,
2001. ACM.

[12] D. Clarke, T. Wrigstad, and J. Noble, editors. Aliasing in Object-Oriented
Programming. Springer-Verlag Berlin Heidelberg, 2013.

[13] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[14] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs,
Workshop, pages 52–71, London, UK, 1981. Springer-Verlag.

[15] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani. Model checking
and the state explosion problem. In B. Meyer and M. Nordio, editors,
Tools for Practical Software Verification, volume 7682 of Lecture Notes in
Computer Science, pages 1–30. Springer Berlin Heidelberg, 2012.

[16] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In TPHOLs ’09, volume 5674 of LNCS, pages
23–42, Heidelberg, 2009. Springer.

[17] J. Corbet, A. Rubini, and G. Kroah-Hartmann. Linux Device Drivers.
O’Reilly, 3rd edition, 2005.

[18] E. W. Dijkstra. Guarded commands, non-determinacy and a calculus for
the derivation of programs. In Language Hierarchies and Interfaces, pages
111–124. Springer, 1976.

[19] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In European Conference on
Object-Oriented Programming, pages 504–528. Springer, 2010.

[20] D. Distefano and M. J. Parkinson J. jstar: Towards practical verification
for Java. In ACM Sigplan Notices, volume 43, pages 213–226. ACM, 2008.

BIBLIOGRAPHY 213

[21] P. Ducklin. Anatomy of a “goto fail” – Apple’s SSL bug explained, plus an
unofficial patch for OS X! https:
//nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-
apples-ssl-bug-explained-plus-an-unofficial-patch/.

[22] Federal Aviation Administration. https://www.gpo.gov/fdsys/pkg/FR-
2015-05-01/pdf/2015-10066.pdf.

[23] U. I. Forum. Universal Serial Bus specification revision 2.0, 2000.

[24] U. I. Forum. Device class definition for Human Interface Devices (HID),
2001.

[25] U. I. Forum. Universal Serial Bus mass storage class specification
overview, 2010.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[27] S. Gibbs. US aviation authority: Boeing 787 bug could cause ’loss of
control’. 05 2016.
https://www.theguardian.com/business/2015/may/01/us-aviation-
authority-boeing-787-dreamliner-bug-could-cause-loss-of-
control.

[28] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In APLAS’07, 2007.

[29] G. Heiser, K. Elphinstone, I. Kuz, G. Klein, and S. M. Petters. Towards
trustworthy computing systems: taking microkernels to the next level.
SIGOPS Oper. Syst. Rev., 41:3–11, July 2007.

[30] T. A. Henzinger, R. Jhala, R. Majumdar, G. C. Necula, G. Sutre, and
W. Weimer. Temporal-safety proofs for systems code. In CAV ’02, volume
2402 of LNCS, pages 382–399, Heidelberg, 2002. Springer.

[31] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580 and 583, 1969.

[32] Inria. The Coq proof assistant. https://coq.inria.fr/.

[33] B. Jacobs, D. Bosnacki, and R. Kuiper. Modular Termination Verification.
In J. T. Boyland, editor, 29th European Conference on Object-Oriented
Programming (ECOOP 2015), volume 37 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 664–688, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://nakedsecurity.sophos.com/2014/02/24/anatomy-of-a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/
https://www.gpo.gov/fdsys/pkg/FR-2015-05-01/pdf/2015-10066.pdf
https://www.gpo.gov/fdsys/pkg/FR-2015-05-01/pdf/2015-10066.pdf
https://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control
https://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control
https://www.theguardian.com/business/2015/may/01/us-aviation-authority-boeing-787-dreamliner-bug-could-cause-loss-of-control
https://coq.inria.fr/

214 BIBLIOGRAPHY

[34] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C
and Java. In NASA Formal Methods 2011, volume 6617 of LNCS, pages
41–55, Heidelberg, 2011. Springer.

[35] B. Jacobs, J. Smans, and F. Piessens. The VeriFast program verifier: A
tutorial. https:
//people.cs.kuleuven.be/~bart.jacobs/verifast/tutorial.pdf.

[36] B. Jacobs, J. Smans, and F. Piessens. The VeriFast program verifier: A
tutorial. https://doi.org/10.5281/zenodo.887907.

[37] B. Jacobs (editor). Verifast 17.06, June 2017.
https://doi.org/10.5281/zenodo.819853.

[38] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer. Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’15, pages 637–650, New York, NY, USA, 2015. ACM.

[39] M. Kim and Y. Kim. Concolic testing of the multi-sector read operation
for flash memory file system. In SBMF ’09, volume 5902 of LNCS, pages
251–265, Heidelberg, 2009. Springer.

[40] L. M. Kristensen, S. Christensen, and K. Jensen. The practitioner’s guide
to coloured Petri nets. International Journal on Software Tools for
Technology Transfer, 2:98–132, 1998.

[41] J. Leyden. Annus horribilis for TLS! All the bigguns now officially pwned
in 2014. 11 2014. http://www.theregister.co.uk/2014/11/12/ms_
crypto_library_megaflaw/.

[42] R. Love. Linux Kernel Development. Novell Press, second edition, 2005.

[43] Microsoft. Vulnerability in Schannel could allow remote code execution,
2014. https://technet.microsoft.com/library/security/MS14-066.

[44] Ministry of Land, Infrastructure, Transport and Tourism. City heights
Takeshiba elevator accident investigation report (translated title).
http://www.mlit.go.jp/common/000048837.pdf.

[45] J. T. Mühlberg and G. Lüttgen. BLASTing Linux code. In FMICS ’06,
volume 4346 of LNCS, pages 211–226, Heidelberg, 2007. Springer.

[46] J. T. Mühlberg and G. Lüttgen. Verifying compiled file system code. In
SBMF ’09, volume 5902 of LNCS, pages 306–320, Heidelberg, 2009.
Springer.

https://people.cs.kuleuven.be/~bart.jacobs/verifast/tutorial.pdf
https://people.cs.kuleuven.be/~bart.jacobs/verifast/tutorial.pdf
https://doi.org/10.5281/zenodo.887907
https://doi.org/10.5281/zenodo.819853
http://www.theregister.co.uk/2014/11/12/ms_crypto_library_megaflaw/
http://www.theregister.co.uk/2014/11/12/ms_crypto_library_megaflaw/
https://technet.microsoft.com/library/security/MS14-066
http://www.mlit.go.jp/common/000048837.pdf

BIBLIOGRAPHY 215

[47] K. Nakata and T. Uustalu. A Hoare logic for the coinductive trace-based
big-step semantics of While. In Proceedings of the 19th European
Conference on Programming Languages and Systems, ESOP’10, pages
488–506, Berlin, Heidelberg, 2010. Springer-Verlag.

[48] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Reasoning with the awkward squad. In ACM SIGPLAN
International Conference on Functional Programming, 2008.

[49] P. O’Hearn. A primer on separation logic (and automatic program
verification and analysis). In T. Nipkow, O. Grumberg, and
B. Hauptmann, editors, Software Safety and Security; Tools for Analysis
and Verification, number 33 in NATO Science for Peace and Security
Series. IOS Press, 2012. Marktoberdorf Summer School 2011 Lecture
Notes.

[50] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In CSL, 2001.

[51] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[52] W. Oortwijn, M. Huisman, S. Blom, M. Zaharieva-Stojanovski, and
D. Gurov. An abstraction technique for describing concurrent program
behaviour. In 9th Working Conference on Verified Software: Theories,
Tools, and Experiments (VSTTE) 2017. To appear.
http://wwwhome.ewi.utwente.nl/~marieke/vstte2017.pdf.

[53] OpenSSL. TLS heartbeat read overrun.
https://www.openssl.org/news/secadv/20140407.txt.

[54] M. Parkinson and G. Bierman. Separation logic and abstraction. In
Proceedings of the 32nd Symposium on Principles of Programming
Languages, pages 247–258. ACM, 2005.

[55] W. Penninckx and B. Jacobs. A higher-order-ish logic with prophecies for
concurrency verification. To be submitted.

[56] W. Penninckx and B. Jacobs. I/O style verification of
memory-manipulating programs. To be submitted.

[57] W. Penninckx and B. Jacobs. Sound, modular and compositional
verification of the input/output behavior of programs: extended version.
To be submitted.

http://wwwhome.ewi.utwente.nl/~marieke/vstte2017.pdf
https://www.openssl.org/news/secadv/20140407.txt

216 BIBLIOGRAPHY

[58] W. Penninckx and B. Jacobs. Coq formalization and soundness proof for
an input/output verification approach, Dec. 2016.
https://doi.org/10.5281/zenodo.887578.

[59] W. Penninckx, B. Jacobs, and F. Piessens. Modular, compositional and
sound verification of the input/output behavior of programs. CW Reports
CW663, Department of Computer Science, KU Leuven, May 2014.

[60] W. Penninckx, B. Jacobs, and F. Piessens. Sound, modular and
compositional verification of the input/output behavior of programs. In
J. Vitek, editor, Programming Languages and Systems, European
Symposium on Programming (ESOP 2015), London, UK, 14-16 April
2015, pages 158–182. Springer Berlin Heidelberg, Apr. 2015.

[61] W. Penninckx, J. T. Mühlberg, J. Smans, B. Jacobs, and F. Piessens.
Sound formal verification of Linux’s USB BP keyboard driver. In NASA
Formal Methods, volume 7226, pages 210–215. Springer, April 2012.

[62] P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and
F. Piessens. Software verification with VeriFast: Industrial case studies.
Science of Computer Programming, 82(1):77–97, March 2014.

[63] B. C. Pierce, A. A. de Amorim, C. Casinghino, M. Gaboardi,
M. Greenberg, C. Hriţcu, V. Sjöberg, and B. Yorgey. Software
Foundations. https://www.cis.upenn.edu/~bcpierce/sf.

[64] R. Piskac, T. Wies, and D. Zufferey. Grasshopper: Complete heap
verification with mixed specifications. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages
124–139. Springer, 2014.

[65] H. Post, C. Sinz, and W. Küchlin. Towards automatic software model
checking of thousands of Linux modules – a case study with Avinux.
Softw. Test. Verif. Reliab., 19:155–172, 2009.

[66] J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th Colloquium on International
Symposium on Programming, pages 337–351, London, UK, 1982.
Springer-Verlag.

[67] F. Redmill. Understanding the use, misuse and abuse of safety integrity
levels. https://www.cems.uwe.ac.uk/~a2-lenz/n-
gunton/worksheets/3A.SILs.pdf.

[68] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Symposium on Logic in Computer
Science, pages 55–74, Washington, 2002. IEEE.

https://doi.org/10.5281/zenodo.887578
https://www.cis.upenn.edu/~bcpierce/sf
https://www.cems.uwe.ac.uk/~a2-lenz/n-gunton/worksheets/3A.SILs.pdf
https://www.cems.uwe.ac.uk/~a2-lenz/n-gunton/worksheets/3A.SILs.pdf

BIBLIOGRAPHY 217

[69] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS ’02, pages 55–74, Washington, 2002. IEEE.

[70] A. J. Turon and M. Wand. A separation logic for refining concurrent
objects. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’11, pages
247–258, New York, NY, USA, 2011. ACM.

[71] S. Vankateswaren. Essential Linux Device Drivers. Prentice Hall, 2008.

[72] F. Vogels, B. Jacobs, and F. Piessens. Featherweight verifast. Logical
Methods in Computer Science, 11(3), 2015.

[73] F. Vogels, B. Jacobs, F. Piessens, and J. Smans. Annotation inference for
separation logic based verifiers. In FMOODS 2011, volume 6722 of LNCS,
pages 319–333, Heidelberg, 2011. Springer.

[74] R. Wisnesky, G. Malecha, and G. Morrisett. Certified web services in
Ynot. In 5th International Workshop on Automated Specification and
Verification of Web Systems, July 2009.

[75] T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher. Model
checking concurrent Linux device drivers. In ASE ’07, pages 501–504, New
York, 2007. ACM.

[76] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. O’Hearn. Scalable shape analysis for systems code. In CAV 2008,
volume 5123 of LNCS, pages 385–398, Heidelberg, 2008. Springer.

[77] M. Zhivich and R. K. Cunningham. The real cost of software errors.
IEEE Security Privacy, 7(2):87–90, March 2009.

List of publications

Articles to be submitted

• W. Penninckx and B. Jacobs. Sound, modular and compositional
verification of the input/output behavior of programs: extended version.
To be submitted

• W. Penninckx and B. Jacobs. I/O style verification of
memory-manipulating programs. To be submitted

• W. Penninckx and B. Jacobs. A higher-order-ish logic with prophecies for
concurrency verification. To be submitted

Articles in internationally reviewed academic journals

• P. Philippaerts, J. T. Mühlberg, W. Penninckx, J. Smans, B. Jacobs, and
F. Piessens. Software verification with VeriFast: Industrial case studies.
Science of Computer Programming, 82(1):77–97, March 2014

Papers at international scientific conferences and symposia,
published in full in proceedings

• B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C
and Java. In NASA Formal Methods 2011, volume 6617 of LNCS, pages
41–55, Heidelberg, 2011. Springer

• W. Penninckx, J. T. Mühlberg, J. Smans, B. Jacobs, and F. Piessens.
Sound formal verification of Linux’s USB BP keyboard driver. In NASA
Formal Methods, volume 7226, pages 210–215. Springer, April 2012

219

220 LIST OF PUBLICATIONS

• W. Penninckx, B. Jacobs, and F. Piessens. Sound, modular and
compositional verification of the input/output behavior of programs. In
J. Vitek, editor, Programming Languages and Systems, European
Symposium on Programming (ESOP 2015), London, UK, 14-16 April
2015, pages 158–182. Springer Berlin Heidelberg, Apr. 2015

Internal reports

• W. Penninckx, B. Jacobs, and F. Piessens. Modular, compositional and
sound verification of the input/output behavior of programs. CW Reports
CW663, Department of Computer Science, KU Leuven, May 2014

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IMEC-DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
https://www.cs.kuleuven.be

	Abstract
	Contents
	List of Figures
	Introduction
	Case study: verified keyboard driver
	Introduction
	VeriFast
	USB
	Linux's USB API
	Overview of structs
	Initialization and cleanup
	Device ID table
	Probe and disconnect
	URBs
	Completion handlers

	Overview of how usbkbd works
	Verifying the USB BP keyboard driver
	Killable asynchrounous resubmittable requests with completion callback

	Related work
	Conclusions

	List of symbols (I/O)
	I/O verification
	Introduction
	Programming language: syntax
	Programming language: semantics
	Specifications: Petri nets
	Petri nets
	Petri nets as heaps
	Programs and Petri nets

	Instrumented semantics
	Soundness

	Program logic: assertions and proof rules
	Hoare triples and assertions
	Hoare triples with multiple starting Petri nets
	Copredicates
	no_op
	Interleaving
	Soundness

	Examples
	Tee
	Read files mentioned in a file
	Print any string of the grammar of matching brackets
	Turing machine
	Mechanical verification of the examples

	A monoid for verifying input/output
	Related work
	Conclusions and future work

	List of symbols (in-memory)
	I/O style verification of memory-manipulating programs
	Introduction
	Warmup without concurrency
	Concurrency
	I/O threads
	Places
	Tokens, ghost cell families, fractions and atomic spaces
	Split and join
	I/O actions
	Main
	Formalization: Concurrent programming language
	Formalization: Atomic blocks
	Formalization: Ghost cell families

	Reusability
	Example: Reusable buffer without I/O
	Example: Reusable putchar
	Example: Reusable print_hi with I/O style specifications
	Example: main specification without I/O style spec
	Example: main implementation calling I/O style specified functions
	Formalization: Higher order functions

	Reading
	Prophecies
	Recursive functions
	Example: reading
	Formalization: Prophecies
	Formalization: Recursive functions

	Multiple instances of the same data structure
	Example: putchar (multiple instances supported)
	Example: Writer cat reader

	Formalization: Erasure
	Soundness
	Conclusions, related work, and future work

	Conclusion
	Proofs I/O verification approach
	Unique weakest precondition
	Safe implies trace simulation
	Weakest precondition implies safe
	Proven Hoare triple implies weakest precondition

	Proofs in-memory I/O
	Soundness proof in-memory I/O
	Recursion

	Bibliography
	List of publications

