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Abstract. Case studies on formal software verification can be divided
into two categories: while (i) unsound approaches may miss errors or
report false-positive alarms due to coarse abstractions, (ii) sound ap-
proaches typically do not handle certain programming constructs like
concurrency and/or suffer from scalability issues. This paper presents a
case study on successfully verifying the Linux USB BP keyboard driver.
Our verification approach is (a) sound, (b) takes into account dynamic
memory allocation, complex API rules and concurrency, and (c) is ap-
plied on a real kernel driver which was not written with verification in
mind. We employ VeriFast, a software verifier based on separation logic.
Besides showing that it is possible to verify this device driver, we identify
the parts where the verification went smoothly and the parts where the
verification approach requires further research to be carried out.

1 Introduction

The safety and security of today’s omni-present computer systems critically de-
pends on the reliability of operating systems (OS). Due to their complicated
task of managing a system’s physical resources, OSs are difficult to develop and
to debug. As studies show, most defects causing operating systems to crash are
not in the system’s kernel but in the large number of OS extensions available [1,
4]. In Windows XP, for example, 85% of reported failures are caused by errors
in device drivers [1]. As explained in [4], the situation is similar for Linux and
FreeBSD: error rates reported for device drivers are up to seven times higher
than error rates stated for the core components of these OSs.

A lot of research aims to prove the correctness of programs. However, not
much work has been carried out to test whether the results of this research is
applicable to complex real-world programs where correctness is important, like
operating systems drivers. To work towards addressing this question, this paper
applies a separation-logic based verifier, VeriFast [11], on a device driver taken
from the Linux kernel.

The driver code subject to verification is Linux’s USB Boot Protocol key-
board driver. While being small, this driver contains a bigger than expected
subset of kernel driver complexity. It involves asynchronous callbacks, dynamic
allocated memory, synchronization and usage of complex APIs. During verifi-
cation, we identified and fixed a number of bugs. For these bugs we submitted
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patches that have been accepted by the driver’s maintainer and are queued for
inclusion in future Linux releases.

In the remainder of this paper we briefly introduce VeriFast and the device
driver. We outline the verification of the driver and elaborate on the challenges
involved. Finally, we discuss related work and draw conclusions.

2 Background

The verifier we apply to the USB BP keyboard driver is VeriFast. VeriFast’s
underlying logic is based on an extension of separation logic. Separation logic [16]
builds on Hoare Logic [10] and adds support for the heap by introducing the
separating conjunction ∗ and other assertions describing a heap. An assertion
A ∗ B expresses that the heap can be divided in two disjoint parts, such that
assertion A holds for the first part and B holds for the second part.

Concurrency is supported by associating a real number (called “fraction”)
from (0, 1] to every heap cell which is regarded as a permission (e.g. to access
data) [3]. Multiple threads can obtain different fractions of the same permission.
What is allowed with the permission, depends on the fraction, e.g. for an access-
data permission, a fraction 1 denotes read-write permission, a fraction of another
size denotes read-only permission.

Specifications for (spin)locks are done in a fashion similar to [7]: with a lock a
handle and an invariant are associated. A fraction of the handle allows acquiring
the lock, which yields (adds to the thread’s owned permissions) the invariant
which represents the permissions protected by the lock.

VeriFast checks annotated C files. The annotations can contain pre- and post-
conditions written in separation logic, ghost data structures and ghost lemmas.
The VeriFast tool and its technical documentation, including a tutorial and a
formalization of a core subset of VeriFast and its semantics, are available for
download at http://www.cs.kuleuven.be/~bartj/verifast/.

3 Overview of How usbkbd Works

The driver subject to verification is Linux’s USB Boot Protocol keyboard driver,
named usbkbd1. This section gives a high-level overview of how the driver works,
leaving out details concerning concurrency and the exact API usage.

On loading, usbkbd registers itself with the USB API. When a new keyboard
is attached, the API calls the usb_kbd_probe function of usbkbd. usb_kbd_

probe checks whether the driver can handle the attached keyboard, and if so
initializes a USB Request Block (URB). An URB is an asynchronous request that
can be used to send or receive data from a USB device. The purpose of the URB
initialized here is to receive key-presses and key-releases. This URB is named
the IRQ URB. usb_kbd_probe initializes another URB for updating the LED

1 The driver’s source file, usbkbd.c, is located in drivers/hid/usbhid/ in the Linux
kernel distribution available from http://kernel.org/.
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status (e.g. numlock) named the LED URB. usb_kbd_probe then registers a new
input device with the input API to make the keyboard available to applications.
When the newly created input device is opened, usbkbd’s usb_kbd_open callback
is invoked and usb_kbd_open submits the IRQ URB. When a key is pressed
or released, the URB completion callback usb_kbd_irq is called. usb_kbd_irq
parses the data received from the keyboard and reports key-presses and releases
to the input API. It then resubmits the URB. When the input API decides
the LED status needs to be changed, the usb_kbd_event callback is invoked.
This callback checks whether a LED URB is in progress, and if not submits the
LED URB with the appropriate data. Otherwise, it stores the new LED info in
a buffer. When the LED URB completion callback usb_kbd_led is called, this
callback checks whether new LED info has appeared while the LED URB was in
progress. If so, usb_kbd_led resubmits the LED URB with the new LED info.

4 Verifying the USB BP Keyboard Driver

Verification of the driver is against the original API. Wrapper functions are only
used in a few cases where API functions return a struct (i.e. not a pointer to
a struct) because this is currently not supported by VeriFast. The APIs that
usbkbd uses are the USB API, the input API, spinlocks, and some generic func-
tions like memcpy. Verification thus consists of (1) writing formal specifications for
these APIs, based on official documentation and reading the API implementation
for the underspecified or undocumented parts, and (2) of adding annotations to
usbkbd. These annotations consists of contracts (pre- and postconditions written
in separation logic), predicates to describe data structures, predicate family in-
stances to instantiate callback function contracts, lemmas (i.e. ghost functions),
and ghost-code like folding and unfolding predicates.

The verified properties are freedom of data races in the presence of concurrent
callbacks, freedom of illegal memory accesses, and correct API usage. This does
not include a formal proof of correctness of the hand-written API formalization.

usbkbd is one of the smallest Linux kernel drivers. It consists of 426 lines of C
code (including blanks and comments). VeriFast reports 329 lines of actual code
and 822 lines of annotations. The API specifications count up to 769 lines of
code. VeriFast can be launched for this driver with “verifast -prover redux

-c usbkbd_verified.c”. On an Intel L9400 1.86GHz running the verifier takes
about one second. The annotated sources of usbkbd, specifications for the used
APIs and the patches submitted to the driver’s maintainer are available at
http://people.cs.kuleuven.be/~willem.penninckx/usbkbd/.

Writing Specifications for the Input API and some generic functions like
kmalloc was rather straightforward. API rules include forbidding double frees,
requiring when registering input devices that the given callbacks are real function
pointers with a contract not conflicting with some rules, etc.

Killable URBs were rather tricky to get verified for the LED URB. Because
usb_kbd_event and usb_kbd_led both submit URBs, they are synchronized
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with a spinlock. A C boolean led_urb_submitted represents whether the URB is
in progress, and thus also whether the URB data (necessary for URB submitting)
is not owned by the lock invariant. After killing the URB, the URB data must
be taken out of the lock invariant in order to free it, i.e. VeriFast must be
convinced led_urb_submitted is false. We used a ghost-counter (associated with
a predicate of which a uniqueness-proof must be provided on creation) named
cb_out_count that yields a ticket on increase and ensures the counter is at least
n high if n such tickets are owned. Another counter, killcount, keeps track
of the number of URB submits. By making sure killcount tickets of cb_out_

count are obtained when killing the URB, we can prove cb_out_count is at
least as high as killcount. Because cb_out_count is maximum one less than
cb_out_count, we know they are equal, which can only happen if the URB is
not submitted.

The usb_kbd_malloc and usb_kbd_free’s Contracts take into account all
possible combinations of failed and successful allocation and initialization, which
makes their contracts long, and dependent on other parts of the annotations.

Flow Between Callbacks had to be reasoned about: permissions are passed
between callbacks by setting up callbacks in other callbacks. Reasoning about
flow between multiple callbacks easily gives the impression big parts of the pro-
gram must be taken into account at the same time.

5 Related Work

Here we discuss related case studies and tools in the context of OS verification.
The reader is referred to [11] for a discussion of the related work on VeriFast.

Several automated tools for verifying C programs have been introduced. No-
tably, CEGAR-based [5] model checkers such as BLAST [9] and SLAM/SDV [1]
have been applied to check the conformance of device drivers with a set of API
usage rules. In contrast with our work, these tools do not provide support for
identifying errors with respect to the inherently concurrent execution environ-
ment device drivers are operating in. The tools also assume either that a pro-
gram “does not have wild pointers” [1] or, as shown in [13], perform poorly when
checking OS components for memory safety.

In [18] a model checker with support for pointers, bit-vector operations and
concurrency is evaluated on a case study on Linux device drivers. The tool checks
for buffer overflows, pointer safety, division by zero and user-written assertions.
Yet, it requires a test harness with a fixed number of threads to be generated for
each driver. VeriFast, in difference, handles concurrency implicitly and aims at
verifying full functional correctness and implements assume-guarantee reasoning
using generic API contracts. Therefore, VeriFast can check each function of a
driver in isolation, which contributes to the scalability of our approach.

Bounded model checking and symbolic execution have been successfully ap-
plied to the source code [15, 12] and to the object code [14] of kernel modules. In
contrast to the VeriFast approach, these techniques suffer from severe limitations
with respect to reasoning about concurrently executing kernel threads.
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Shape analysis has been applied to Windows [2] and Linux [19] drivers, and
aims to automatically infer, e.g. whether a variable points to a cyclic or acyclic
list. Shape analysis can be employed to verify pointer safety, guaranteeing that
the shape of data structures is maintained throughout program execution. Ongo-
ing work on VeriFast envisages the use of shape analysis to infer annotations [17].

A competing toolkit to VeriFast is the Verifying C Compiler (VCC) [6]. VCC
verifies C programs annotated with contracts in Boogie. The tool generates veri-
fication conditions from the annotated program, which are then discharged by an
SMT solver. VCC can be expected to require fewer annotations than VeriFast,
however, at the expense of a less predictable search times. The toolkit has been
employed in a case study on verifying the Microsoft Hypervisor.

Other approaches to OS verification involving modelling and interactive proof.
Most notably, the L4.verified [8] project aims at producing a verified OS ker-
nel by establishing refinement relations between several layers of Isabelle/HOL
specifications, a prototypic kernel implementation in Haskell and the actual ker-
nel implementation in C and assembly. This differs from our work as we do not
employ refinement relations and verification is non-interactive.

6 Conclusions

We report on the successful verification of usbkbd, the USB Boot Protocol key-
board driver distributed with the Linux kernel, using the sound and efficient ver-
ification tool VeriFast. The verified properties are crash-freedom, race-freedom,
and a set of API usage rules. The usbkbd driver presents a challenging case
study as it involves concurrency and employs a complex API.

VeriFast requires the source code to be annotated with method contracts that
are typically easy to write. Certain programming constructs that are difficult to
annotate are discussed in this paper. During verification, we identified two bugs
related to erroneous synchronization and a missing URB kill. Our case study
shows that VeriFast is a powerful tool. Yet, the annotation overhead amounts to
a total of 4.8 lines of annotations per line of code. About half of these annotations
specify API contracts, that can potentially be reused in future case studies.

Verifying functional correctness and unload-safety is left for further work.
Unload-safety includes making sure the kernel does not maintain a function-
pointer to a callback of a module that is already unloaded. It is hard to tell
whether our verification approach will scale for larger device drivers. More au-
tomation for writing or generating annotations with a high degree of decompo-
sition might help. From our experience we conclude that execution speed of the
verification tool will not impose problems for larger drivers.
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