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Abstract

In this article we present a series of four industrial case studies in software
verification. We applied VeriFast, a sound and modular software verifier based
on separation logic, to two Java Card smart card applets, a Linux device driver,
and an embedded Linux network management component, the latter two written
in C. Our case studies have been carefully selected so as to evaluate the industrial
applicability of VeriFast. We focus on proving the absence of safety violations,
e.g., that the programs do not perform illegal operations such as dividing by zero
or illegal memory accesses. Yet, given the sensitive application environment of
our case studies, these safety properties typically have security implications. In
this article we give a detailed description of the VeriFast approach to software
verification based on two of the above case studies, one in Java and one in C.
Finally, we draw conclusions on the overall feasibility of using VeriFast to verify
software components in industrial domains that have stringent requirements on
reliability and security.
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1. Introduction

A major goal in computer science is to create a platform on which a developer
is able to develop software that is both stable and secure, is easy to write and
modify, and is also fast. Unfortunately, a number of these goals seem to counter
each other. For example, software that is easy to write will typically be slower.
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Formal Verification of Linux’s USB BP Keyboard Driver”, volume 7226 of Lecture Notes in
Computer Science, pages 210–215, Springer, 2012.
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It is now up to the research community to find the optimal trade-off between
these properties.

Software verification can help to reach this optimal trade-off by giving devel-
opers the means to formally prove the absence of a range of bugs and potential
security loophole in their code. The developer must annotate the code to indi-
cate what it should do, and a verifier will then check whether the code actually
does what the programmer wants it to do. Wherever possible, proof steps are
automatically generated by the verifier. However, it might sometimes be nec-
essary to manually annotate the code with proof steps in order to guide the
verifier.

The field of formal software verification has made great strides in the last
decade [1]. Yet, especially when considering post-hoc software verification, many
existing techniques and tools are tailor-made for rather specific application do-
mains or case studies. In particular, programming constructs that involve con-
currency and dynamic memory management are often ruled out.

In this article we present a series of four non-trivial case studies in software
verification. We employ VeriFast, a sound and modular software verifier based
on separation logic, to two Java Smart Card applets, a Linux device driver, and
an embedded Linux network management component, which are written in C.
Our case studies have been carefully selected so as to evaluate the industrial ap-
plicability of VeriFast. We aim to show that VeriFast is a general-purpose soft-
ware verification tool that combines an interactive verification experience with
a high degree of automation and features reasoning about programs that in-
volve concurrency and dynamic memory allocation. We focus on proving safety
properties, i.e. the absence of run-time errors; proving functional correctness is
possible with VeriFast but not considered in these case studies.

VeriFast [2] is a verifier for single-threaded and multithreaded C and Java
programs. The approach enables programmers to prove the absence of cer-
tain safety violations such as invalid memory accesses (including null pointer
dereferences and out-of-bounds array accesses), as well as compliance with
programmer-specified method preconditions and postconditions.

1.1. Case Studies

Software verification is still a very time-consuming process. Existing or new
source code must be annotated in order to express assumptions and invariants,
and to let the verifier reason about the code. Minimizing these required anno-
tations is an active field of research where a lot of work remains to be done.
For current verification technologies the overhead of annotating code is far from
negligible, so it is not (yet) economically profitable to try to annotate and verify
every piece of code. Large, non-critical code bases are examples where the effort
probably is not justifiable.

However, there are a number of areas where software verification potentially
does make sense. Smart card applications for example have a number of prop-
erties that do make them ideal candidates for software verification. First of all,
they are typically small, in the order of a few thousand lines of code. Secondly,

2



they are critical, in the sense that they usually offer some kind of security ser-
vice. And last but not least, it is extremely difficult to update the code once
it has been deployed. If a serious bug is discovered in the code, it might be
necessary to recall all the deployed smart cards and issue new ones, which could
be a commercial disaster.

Another example are operating system drivers that have to be extremely sta-
ble because any bug can crash the entire system. In addition, drivers typically
run with elevated privileges, so bugs in driver code may have very significant
security implications. Moreover, multiple threads can execute concurrently in-
side a driver, making it difficult to find bugs through testing and to reliably
reproduce them once they are found.

This article reports on four case studies, two of which are discussed in de-
tail. We detail our experience with a large open source Java Card applet, and
a commercial C implementation of a Policy Enforcement Point for embedded
Linux gateways. We also briefly describe two other case studies, one on a Linux
device driver and one on an industrial Java Card applet. The commercial Policy
Enforcement Point and the industrial Java Card applet originate from industry
partners of the SecureChange1 project.

1.2. Organization of the Article

This article assesses the applicability of the VeriFast approach to industrial
code. Four case studies have been selected, two of which are Java Card applets
and two C programs. Section 2 introduces the VeriFast tool and provides some
background on verifying Java Card and C programs. Sections 3 and 4 describe
the open source Java Card applet and Policy Enforcement Point case studies in
detail; 5 briefly discusses the two remaining ones. Finally, Section 6 discusses
related software verification tools and case studies, and Section 7 concludes the
article and summarizes our experience.

2. Background

This section briefly describes the verification technology used for the case
studies. Section 2.1 presents a short overview of the VeriFast approach for
verification of C and Java programs. Section 2.2 introduces Java Card specific
topics. Section 2.3 shows how code can be annotated and debugged using the
VeriFast symbolic debugger.

2.1. VeriFast

VeriFast2 [2] is a verifier for C and Java programs annotated with separation
logic specifications [3]. The tool modularly checks via symbolic execution [4] that

1Background information on SecureChange is available online at http://www.

securechange.eu/.
2VeriFast can be downloaded from http://distrinet.cs.kuleuven.be/software/

VeriFast/. The current VeriFast distribution ships with many examples and tutorials.
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each function or method in the program satisfies its specification. If VeriFast
deems a program to be correct, then that program does not exhibit certain
run-time errors.

VeriFast’s underlying logic is based on an extension of separation logic. At
the heart of separation logic lies the concept of permissions [5]. That is, each
activation record holds a number of permissions and it can only access a memory
location if it holds the corresponding permission to do so: at the beginning of
each function or method call, the permissions required by the callee are trans-
ferred from the caller to the callee. When a function or method returns, the
permissions expected by the caller are transferred from the callee back to the
caller. The VeriFast tool reports an error if either the caller lacks a permis-
sion required by the callee or if the callee lacks a permission expected by the
caller. VeriFast enforces the program wide invariant that (1) if an activation
record holds the permission to access a particular memory location, then that
memory location is allocated and (2) that if an activation record has permission
to write a memory location, then no other activation record has permission to
access that memory location at the same time. By enforcing this invariant, the
tool can guarantee the absence of certain run-time errors. First of all, as an
activation record can only access a memory location if it has permission to do
so and because of (1), verified programs do not contain illegal memory accesses.
Secondly, a data race occurs when two threads simultaneously access the same
memory location and at least one of these accesses is a write operation. Verified
programs do not contain data races because a thread can only access a memory
location if one of its activation records holds the corresponding permission and
because of (2). Finally, the permission policy allows the tool to deduce an upper
bound on the set of memory locations that can be modified by a function or
method call: if the caller holds the permission to access a memory location and
does not transfer this permission to the callee, then the callee cannot modify
that memory location.

In the remainder of this section, we explain particular aspects of the verifier
relevant to the case studies discussed in this paper in more detail. We first
discuss verification of C programs and then turn our attention to Java.

2.1.1. Verification of C Programs

An activation record can only access a memory location if it has permission
to do so. The permission to access (i.e. both read and write) the field f of an
object o with value v is denoted o.f |-> v. For example, consider the struct
interval in Listing 1. The permission to access to field low of an interval

pointer i with value l is denoted i->low |-> l.

Listing 1: VeriFast annotations for C

1 struct interval {

2 int low;

3 int high;

4 };

5
6 void shift(struct interval* i, int v)

7 //@ requires i->low |-> ?l &*& i->high |-> ?h;
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8 //@ ensures i->low |-> l + v &*& i->high |-> h + v;

9 {

10 i->low += v;

11 i->high += v;

12 }

13
14 int get_low(struct interval* i)

15 //@ requires [1/2]i->low |-> ?l;

16 //@ ensures [1/2]i->low |-> l;

17 {

18 return i->low;

19 }

Each function in the program has a corresponding function contract con-
sisting of a precondition (keyword requires) and a postcondition (keyword
ensures). The precondition describes the permissions the function requires
in order to execute successfully. For example, the function shift from List-
ing 1 requires the permissions to access i->low and i->high. Intuitively, these
permissions are transferred from callers to shift when the function is called.
The permissions granted by the precondition allow shift’s body to update i’s
fields. The precondition uses ?l and ?h for the values of respectively i->low

and i->high. This indicates that the precondition places no restriction on the
values of both fields. Instead, the value of i->low is bound to l and the value of
i->high to h. The postcondition describes the permissions that are transferred
from the function to its caller when the function returns. For example, the
function shift returns the permissions for accessing i’s fields. The postcondi-
tion additionally indicates that the values of both fields have been incremented
by v. Note that our verification tool requires all annotations (such as pre- and
postconditions) to be written inside special comments (/*@ ... @*/) which are
ignored by the C and Java compilers but recognized by our verifier.

To distinguish full (read and write) from read-only access, permissions can
be qualified with a fraction between 0 (exclusive) and 1 (inclusive), where
1 corresponds to full access and any other fraction represents read-only ac-
cess. For example, [f]o.f |-> v denotes full access if f equals 1 and read-
only access if f is less than 1. We typically omit [1] for full permissions.
For example, i->low |-> ?l in the precondition of shift is a shorthand for
[1]i->low |-> ?l. The function get_low of Listing 1 only reads i->low and
therefore its precondition only demands read-only access to i->low instead of
full access. By using the fractional permissions, multiple threads can concur-
rently call get_low. Permissions can be split and merged as required dur-
ing the proof. For example, two read-only permissions [1/2]o.low |-> l and
[1/2]o.low |-> l can be combined to a single full permission [1]o.low |-> l

and the other way around. For each memory location, the sum of the fractional
permissions over all activation records is at most one at all times.

Listing 2: Data abstraction via predicates.

1 /*@

2 predicate interval(struct interval* i, int l, int h) =

3 i->low |-> l &*& i->high |-> h &*& l <= h;

4 @*/
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5
6 void shift(struct interval* i, int v)

7 //@ requires interval(i, ?l, ?h);

8 //@ ensures interval(i, l + v, h + v);

9 {

10 //@ open interval(i, l, h);

11 i->low += v;

12 i->high += v;

13 //@ close interval(i, l + v, h + v);

14 }

15
16 int get_low(struct interval* i)

17 //@ requires [1/2] interval(i, ?l, ?h);

18 //@ ensures [1/2] interval(i, l, h);

19 {

20 //@ open [1/2] interval(i, l, h);

21 return i->low;

22 //@ close [1/2] interval(i, l, h);

23 }

To abstract over the set of permissions required by a function, permissions
can be grouped and hidden via predicates. For example, the predicate interval
from Listing 2 groups and hides the permissions to access i->low and i->high.
In addition, it imposes the constraint that i->low must be less than or equal to
i->high. By using the predicate instead of the field permissions in the contracts
of shift and get_low, the contracts are made implementation-independent.
That is, the implementation of interval can be changed without having to
modify the function contracts, and hence without having to worry about break-
ing or having to reverify client code. Just like basic permissions, predicates can
be split and merged as required during the proof. As shown in Listing 2, we use
open and close annotations to unfold and fold predicate chunks.

Listing 3: Predicate families.

1 //@ predicate_family print_data (void *index )( void *x);

2
3 typedef void print(void *x);

4 //@ requires print_data (this )(x);

5 //@ ensures print_data (this )(x);

6
7 void print_twice(void* x, print* f)

8 //@ requires print_data (f)(x) &*& is_print(f) == true;

9 //@ ensures print_data (f)(x) &*& is_print(f) == true;

10 {

11 f(x); f(x);

12 }

13
14 /*@

15 predicate_family_instance print_data (print_int )( int* x) =

16 integer(x, _);

17 @*/

18
19 void print_int(int* x) //@: print

20 //@ requires print_data ( print_int )(x);

21 //@ ensures print_data (print_int )(x);

22 {
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23 //@ open print_data ( print_int )(x);

24 printf("%i", x);

25 //@ close print_data (print_int )(x);

26 }

27
28 /*@

29 predicate_family_instance print_data ( print_interval )

30 (struct interval* x) =

31 interval(x,_, _);

32 @*/

33
34 void print_interval(struct interval* i) //@: print

35 //@ requires print_data ( print_interval )(i);

36 //@ ensures print_data ( print_interval )(i);

37 {

38 //@ open print_data ( print_interval )(i);

39 //@ open interval(i, _, _);

40 printf("interval from %i to %i", i->low , i->high);

41 //@ close interval(i, _, _);

42 //@ close print_data ( print_interval )(i);

43 }

By default, VeriFast does not automatically fold and unfold predicate def-
initions. Instead, folding and unfolding must be done explicitly by developers
via ghost commands. For example, the open statement in the body of shift
unfolds the definition of the predicate interval, and similarly the close state-
ment folds the definition. Verification of the code snippet shown above fails if
any of the ghost statements is removed.

Programs typically rely on function type definitions to define the signature of
function pointer parameters. For example, the function type definition print

from Listing 3 defines a signature for functions that implement pretty print-
ing. The function print_twice takes a pointer x and a function pointer f as
arguments and uses f to print x twice. In VeriFast, a function contract can
be associated with each function type definition. The assertion is_print(f)

in the precondition of print_twice requires f to be a pointer to a function
that satisfies the contract of print. However, the set of permissions required
by the pretty printing function depends on the data being printed. For exam-
ple, the function print_int requires that x points to a valid integer (i.e. an
integer(x, _) chunk), while print_interval requires x to point to a valid
interval (i.e. interval(x,_, _)). print’s contract can be defined in an imple-
mentation independent manner via a predicate family. Contrary to the regular
predicates described above, a predicate family can have multiple definitions,
depending on an additional parameter called the predicate family index (typ-
ically the address of a function). For example, the function type definition
print is specified in terms of the predicate family print_data. Because the
definition of print_data depends on the function used as an index, which is re-
ferred to by this in print’s contract, any data structure can be pretty printed.
For example, the function print_int satisfies the contract of print (indicated
by the //@: print annotation), because print_data is defined to hold in the
context of this function only if x is a valid pointer to an integer. Similarly,
print_interval satisfies the contract of print as print_data is defined to
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hold in the context of print_interval only if x points to a valid interval.
If VeriFast deems a C program to be correct, then that program does not

exhibit undefined behavior as described by the C11 standard [6]. In particular,
that program does not perform illegal memory access (such as buffer overflows),
memory leaks, data races, assertion violations and specified API usage violations
(such as double frees).

2.1.2. Verification of Java Programs

Just as for C programs, permissions lie at the heart of VeriFast for Java. As
such, the specifications for a C program and the equivalent Java program are
largely similar. As example, consider the class Interval from Listing 4. The
specifications of Interval are similar to the ones shown in the C program of
Listing 2.

Listing 4: VeriFast annotations for Java

1 class Interval {

2 private int low , high;

3
4 /*@

5 predicate interval(int l, int h) =

6 this.low |-> l &*& this.high |-> h &*& l <= h;

7 @*/

8
9 void shift(int v)

10 //@ requires interval (?l, ?h);

11 //@ ensures interval(l + v, h + v);

12 {

13 //@ open interval(l, h);

14 this.low += v;

15 this.high += v;

16 //@ close interval(l + v, h + v);

17 }

18 }

There are two main differences between VeriFast for Java and VeriFast for
C. First of all, each method and each predicate has an implicit this parameter.
Therefore, it is not necessary to explicitly include a reference to the interval.
The second and most important difference is that each non-private instance
method and each predicate is dynamically bound on the dynamic type of this.
For example, i.interval(l , h) denotes that i is valid interval according to
the definition of the predicate defined in i.getClass(). This means that is not
only possible to override methods but also predicates. For example, the class
CountingInterval of Listing 5 overrides both the predicate interval and the
method shift in order count the number of calls to shift.

Note that non-final static fields are treated as instance fields of the corre-
sponding class object. For example, a thread can only modify the static field f
of a class C if it holds full permission to C.f . To simplify verification, final static
fields with constant initializers (such as Integer.MAX_VALUE) are considered to
be constants during verification (meaning that no permission is required to read
them).
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Listing 5: VeriFast annotations for Java

1 class CountingInterval extends Interval {

2 private int counter;

3
4 /*@

5 predicate interval(int l, int h) =

6 this.interval(Interval.class )(l, h) &*&

7 this.counter |-> ?n &*& 0 <= n;

8 @*/

9
10 void shift(int v)

11 //@ requires interval (?l, ?h);

12 //@ ensures interval(l + v, h + v);

13 {

14 //@ open interval(l, h);

15 super.shift(v);

16 counter ++;

17 //@ close interval(l + v, h + v);

18 }

19 }

Each predicate (defined inside a class or interface) represents a predicate
family instance. However, the index is not the address of a function, but the
dynamic type of this.

In both C and Java, predicates play the role of object invariants. For ex-
ample, the predicate valid in the class Interval states amongst others that
the lower bound must be less than or equal to the upper bound for the in-
terval to be in a consistent state. As advocated by Parkinson [7], separation
logic does not impose any built-in rules that describe when invariants must be
established, where they can be assumed and when they can temporarily be bro-
ken. Instead, if an object is required or guaranteed to be consistent, then the
developer should explicitly say so in the method contract by stating that the
corresponding predicate holds.

If VeriFast deems a Java program to be correct, then that program does not
contain null dereferences, array indexing errors, data races, assertion violations
and API usage violations.

2.2. The Java Card Platform

The Java Card platform [8] was initially launched by Sun in 1996 and aimed
to simplify the development of smart card applications. Until then, smart card
code was largely written in C, which is difficult to write in the first place, and
also has distinct disadvantages in terms of security and reliability.

The Java Card platform allowed developers to write smart card applets in
a subset of the Java language that targets a specifically optimized Java frame-
work for smart cards. The older (and most popular) platform, now called Java
Card Classic Edition, does not support floating point operations, strings, multi-
threading, garbage collection, stack inspection, multidimensional arrays, reflec-
tion, etc. The newest Java Card 3.0 Connected Edition supports more features
but is still lacking compared to the full Java language and framework.
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Java Card is now the dominant platform for smart cards, with applications
for GSM, 3G, finance, PKI, e-commerce and e-government. Due to the absence
of serious competition and the improvements of the latest incarnation of the
Java Card platform, it can be expected that this will remain the case in the
near future.

VeriFast was originally developed for C and Java programs, but has been
modified to also support Java Card applications. The Java language used for
Java Card applications is a subset of the full Java language. As a consequence,
supporting Java Card in VeriFast comes down to defining appropriate method
contracts for the Java Card API.

2.2.1. Applets

The entry point of each Java Card applet is a class that extends the built-
in abstract class javacard.framework.Applet. This class defines a number
of methods that are called by the Java Card runtime to interact with the ap-
plet. In particular, the class Applet defines an abstract method process that
must be overridden by the subclass. The implementation of process forms the
core of the applet. More specifically, process takes an Application Protocol
Data Unit (APDU) received from the card terminal as input, processes it, and
possibly returns an updated APDU back to the terminal. An APDU is a byte
sequence, accessed through a byte array called the APDU buffer, whose meaning
is partially standardized and partially application-specific.

A subclass of javacard.framework.Applet is a valid applet only if it de-
clares a static method called install. The goal of this method is to create a
new applet instance and to register this instance with the runtime. The class
MyApplet of Listing 6 shows the prototypical structure of a Java Card applet.

Listing 6: The prototypical structure of an applet.

1 class MyApplet extends Applet {

2 public static void install(byte[] arr , short offset , byte length) {

3 MyApplet applet = new MyApplet ();

4 // initialize the applet

5 applet.register ();

6 }

7
8 public void process(APDU apdu) {

9 // process the apdu

10 }

11 }

2.2.2. Transactions

Java Card applets use two types of memory to store data and intermediate
results. Fields and objects are stored in persistent EEPROM memory, whereas
the stack (and hence local variables) are stored in volatile RAM memory. In
addition, the applet can also choose to allocate arrays in RAM memory, be-
cause this type of memory is faster and is harder for attackers to read. This
complicates things because the smart card may lose power at any time during
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the computation, which results in the RAM memory being wiped, whereas the
EEPROM memory retains the intermediate results.

To preserve consistency of the data stored in persistent memory, Java Card
supports transactions. Specifically, the platform defines three methods to inter-
act with the transaction mechanism: beginTransaction, commitTransaction,
and abortTransaction. When beginTransaction is called, all subsequent
changes to persistent memory are made conditionally. Only when a call to
commitTransaction is executed, the changes to the persistent memory are
committed atomically. If abortTransaction is called instead, or if the card
suddenly loses power before calling commitTransaction, the persistent mem-
ory is restored to its original state (on card boot-up when power is restored).
Note that the transaction mechanism does not impact values stored in RAM.

2.2.3. Integration with VeriFast

VeriFast needs to know for every library method the pre- and postconditions
in order to reason about client code. In the case of the Java Card API, these
specifications are placed in a separate file that gathers all specifications for
classes and methods of the Java Card API. The specifications are based on the
descriptions of these methods in the official Java Card documentation. The
actual implementation of these library functions is not checked.

Building the specification file is an incremental process. VeriFast only needs
pre- and postconditions for the methods that are actually used by the appli-
cations you want to verify. Hence, only a subset of the full Java Card class
library has been annotated in the specification file. It is critical that the speci-
fications of library functions be correct; errors in their annotations threaten the
soundness of the verification process. Therefore, extra care is taken so that the
specification of library functions fully corresponds with the documentation of
said functions.

In the context of Java Card, instance predicates are used to describe con-
sistency conditions for applets. Every applet has an invariant that must be
preserved by each transaction. This invariant guarantees that the applet is in a
consistent state.

2.3. The VeriFast Symbolic Debugger

A feature that proved to be crucial in understanding failed verification at-
tempts is VeriFast’s symbolic debugger. As shown in Figure 1, the symbolic
debugger can be used to diagnose verification errors by inspecting the symbolic
states encountered on the path to the error. For example, if the tool reports an
array indexing error, one can look at the symbolic states to find out why the
index is incorrect.

The symbolic debugger consists of a number of smaller windows that help
the programmer determine where the verification failed. The main sub-window
contains the source code of the program that is being verified. VeriFast indicates
where the verification of the application failed by selecting and coloring the
relevant parts of the source code. All the steps that were required to reach the
result are shown in the Steps window. The programmer can use this window
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Figure 1: The symbolic debugger of VeriFast

to select prior verification steps, and thus step back into the symbolic history
of the verification algorithm. The assumptions window lists assumptions that
hold at the selected verification step. The heap chunks window offers a view on
the symbolic heap; it contains all the elements that are allocated in symbolic
memory at the selected verification step. Finally, there is the locals window that
shows all the local variables and their symbolic values.

3. The Belgian Electronic Identity Card

The Belgian Electronic Identity Card (eID) was introduced in 2003 as a
replacement for the existing non-electronic identity card. Its purpose is to enable
e-government and e-business scenarios where strong authentication is necessary.
The card has the size of a standard credit card and features an embedded
chip. In addition to containing a machine readable version of the information
printed on the card, the chip also contains the address of the owner and two
RSA key pairs with the corresponding X509 certificates. One key pair is used
for authentication, whereas the other key pair can be used to generate legally
binding electronic signatures [9].

The card is implemented on top of the Java Card platform (Classic Edition)
and implements the smart card commands as defined in the ISO7816 standard.
Unfortunately, the actual code that runs on the eID cards is not publicly avail-
able. For our case study, we used an official open source testbed version of the
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eID applet that implements the same functionality as the real eID card3. It is
aimed at developers who wish to interact with eID cards as an easy to use and
customizable testing platform.

The eID implementation consists of one large class called EidCard and a few
other small helper classes. The EidCard class inherits from the Applet class
and encapsulates about 80% of the entire code base. It is a complex class of
about 900 lines of code4 and no less than 38 fields.

3.1. Specification of Transaction Correctness

Java Card offers transactions to preserve consistency of the data stored in
persistent memory. In VeriFast, developers can explicitly write down the desired
consistency conditions. More specifically, the class Applet defines an instance
predicate called valid. Each subclass must override this predicate; o.valid()
means that valid must hold as defined in the dynamic type of o. The imple-
mentation of the predicate given in the subclass defines the consistency condi-
tions for the applet subclass at hand. For example, consider the applet class
ExampleApplet shown below. The predicate valid binds the values of fields
arr and i to logical variables of the same name (line 6), and specifies that
arr points to a non-null array (line 7). Moreover, the predicate imposes the
consistency condition that i is a valid index in arr (line 8).

Listing 7: The contract of the process method, using fractional permissions.

1 class ExampleApplet extends Applet {

2 short i;

3 short[] arr;

4 /*@

5 predicate valid () =

6 this.arr |-> ?arr &*& this.i |-> ?i &*&

7 array_slice (arr , 0, arr.length , _) &*&

8 0 <= i &*& i < arr.length;

9 @*/

10 }

While reading fields is possible at any time, updates to persistent memory
should be made inside of a transaction. The permission system used by VeriFast
is the key to enforcing this property. More specifically, at the start of the
process method, no transaction is in progress. As shown in Listing 8, the pre-
condition of process contains 1/2 of the valid predicate. This means that the
method can read but not update fields included in valid (as the method only has
one half of the permissions included in valid). The predicate current_applet

is simply a token indicating the currently active applet.

3The source code of the eID applet can be downloaded from http://code.google.com/

p/eid-quick-key-toolset/. An annotated version of this source code is included in the
examples section of the VeriFast distribution.

4Throughout this article we report lines of code (LOC) as physical lines of code excluding
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Listing 8: The contract of the process method, using fractional permissions.

1 public void process (...)

2 //@ requires current_applet (this) &*& [1/2] valid () &*& ...;

3 //@ ensures current_applet (this) &*& [1/2] valid () &*& ...;

4 {

5 ...

6 }

To update the fields of the applet, the method should somehow gain ad-
ditional permissions (namely the other half of the valid predicate). These
additional permissions can be acquired by calling beginTransaction. In par-
ticular, the postcondition of beginTransaction shown in Figure 9 gives 1/2
of the valid predicate. The process method can then merge [1/2]valid()

(gained from the precondition of process) and [1/2]valid() (gained from
the postcondition of beginTransaction) into [1]valid(). The full permis-
sion to valid gives the applet the right to modify the applet’s fields for the
duration of the transaction. When calling commitTransaction, half of the per-
missions included in the valid() predicate return to the system again. Note
that it is impossible to call commitTransaction if the applet is in an invalid
state (according to the conditions described by valid), as the precondition of
commitTransaction requires the consistency conditions to hold.

Listing 9: The declaration of the beginTransaction and commitTransaction methods

1 public static void beginTransaction ();

2 //@ requires current_applet (?a) &*& ...;

3 //@ ensures current_applet (a) &*& [1/2]a.valid () &*& ...;

4
5 public static void commitTransaction ();

6 //@ requires current_applet (?a) &*& a.valid () &*& ...;

7 //@ ensures current_applet (a) &*& [1/2]a.valid () &*& ...;

3.2. Inheritance

The ISO7816 standard specifies a mechanism to access files that are stored
on a smart card. Three types of files are defined:

1. Master files represent the root of the file system. Each smart card con-
tains at most one master file.

2. Elementary files contain actual data.

3. Dedicated files serve as directories. They can contain other dedicated
or elementary files.

To represent this structure, the eID implementation uses helper classes that
form a class hierarchy. The root of the hierarchy is the abstract File class. This

comments and blank lines.
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class has two subclasses: DedicatedFile and ElementaryFile. And finally, the
MasterFile class inherits from DedicatedFile.

When a class is defined in the source code, it can be annotated with a
predicate that represents an instance of that class. These predicates can then
be used elsewhere to represent a fully initialized instance of that class. Listing 10
shows how a File predicate can be defined for the corresponding File class.
The class consists of two fields, which are also represented in the predicate. The
predicate can also contain other information about the class such as invariants.

Listing 10: A first definition of the File class and predicate.

1 public abstract class File {

2 /*@ predicate File(short theFileID , boolean activeState ) =

3 this.fileID |-> theFileID &*&

4 this.active |-> activeState ; @*/

5
6 private short fileID;

7 protected boolean active;

8
9 ...

10 }

The ElementaryFile class redefines the File predicate as shown in lines 2-4
of Listing 11. A File predicate that is associated with an ElementaryFile class
is defined as an ElementaryFile predicate where three of the five parameters
are unspecified.

The definition of the ElementaryFile predicate (lines 5-13) consists of a link
to the File predicate defined in Listing 10 and some extra fields and information
that are specific to elementary files.

When an object is cast from the File to the ElementaryFile class (or vice
versa), the corresponding predicate on the symbolic heap must be changed as
well. We ‘annotated’ this by adding the methods that are defined in Listing 12
to the ElementaryFile class and calling these methods when required. Obvi-
ously, this solution is far from elegant because it requires adding calls to stub
functions in the code of the applet. The most recent version of VeriFast sup-
ports annotating this behavior as lemma methods (i.e. methods defined inside
an annotation), removing the requirement of modifying the applet’s code.

One problem that occurs with the methods presented in Listing 12 is that
information is lost when an ElementaryFile is cast to a File and then back
again to an ElementaryFile instance. This loss of information happens in the
castFileToElementary method where three parameters are left undefined.

There are some instances in the eID applet where this loss of information
is problematic. The solution was to extend the File and ElementaryFile

predicates to contain an extra parameter that can store any information. The
result can be seen in Listing 13. Line 3 shows the definition of this extra
parameter. In the case of the File class, no extra information is kept and the
parameter is defined to be empty (denoted as ‘unit’ on line 5). Similarly, line 22
defines the parameter to be empty for the ElementaryFile predicate, because
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Listing 11: A first definition of the ElementaryFile class and predicate.

1 public final class ElementaryFile extends File {

2 /*@ predicate File(short theFileID , boolean activeState ) =

3 ElementaryFile (theFileID , ?dedFile , ?dta ,

4 activeState , ?sz); @*/

5 /*@ predicate ElementaryFile (short fileID ,

6 DedicatedFile parentFile , byte [] data ,

7 boolean activeState , short size) =

8 this.File(File.class )( fileID , activeState ) &*&

9 this. parentFile |-> parentFile &*&

10 this.data |-> data &*& data != null &*&

11 this.size |-> size &*&

12 array_slice (data , 0, data.length , _) &*&

13 size >= 0 &*& size <= data.length; @*/

14
15 private DedicatedFile parentFile;

16 private byte[] data;

17 private short size;

18
19 ...

20 }

all state information that can be stored in the predicate is fully defined by the
other parameters.

Line 14 shows the case where the predicate needs the extra parameter to
store additional information about the object. In this case, the info parameter
stores a quad-tuple of extra information that can be used to correctly initialize
the embedded ElementaryFile predicate without losing information.

3.3. Evaluation

The main goal of this case study was to see how practical it is to use VeriFast
to annotate a Java Card applet that is more than a toy project. It gives us an
idea of how much the annotation overhead is, where we can improve the tool,
and whether we can actually find bugs in existing code using this approach.

Listing 12: Functions to cast predicates.

1 public void castFileToElementary ()

2 //@ requires [?f]File (?fid , ?state );

3 //@ ensures [f] ElementaryFile (fid , _, _, state , _);

4 {

5 //@ open [f]File(fid , state );

6 }

7
8 public void castElementaryToFile ()

9 //@ requires [?f] ElementaryFile (?fid ,? dedFile ,?dta ,?state ,?sz);

10 //@ ensures [f]File(fid , state );

11 {

12 //@ close [f]File(fid , state );

13 }
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Listing 13: A more complete definition of the File and ElementaryFile predicates that sup-
ports downcasting.

1 public abstract class File {

2 /*@ predicate File(short theFileID , boolean activeState ,

3 any info) =

4 this.fileID |-> theFileID &*&

5 this.active |-> activeState &*& info == unit; @*/

6
7 ...

8 }

9
10 public final class ElementaryFile extends File {

11 /*@ predicate File(short theFileID , boolean activeState ,

12 quad <DedicatedFile , byte [], short , any > info) =

13 ElementaryFile (theFileID , ?dedFile , ?dta , activeState ,

14 ?sz , ?ifo) &*& info == quad(dedFile , dta , sz , ifo ); @*/

15 /*@ predicate ElementaryFile (short fileID ,

16 DedicatedFile parent , byte [] data , boolean activeState ,

17 short size , any info) =

18 this.File(File.class )( fileID , activeState , _) &*&

19 this. parentFile |-> parent &*& this.data |-> data &*&

20 data != null &*& this.size |-> size &*&

21 array_slice (data , 0, data.length , _) &*&

22 size >= 0 &*& size <= data.length &*& info == unit; @*/

23
24 ...

25 }

Annotation Overhead. The more information the developer gives in the anno-
tations about how the applet should behave, the more VeriFast can prove about
it. It is up to the developer to choose whether he wants to use VeriFast as a tool
to only detect certain kinds of errors (unexpected exceptions and incorrect use
of the API), or whether he wants to prove full functional correctness of the ap-
plet. Both modi operandi are supported by the tool. For this Java Card applet,
we used the annotations to prove that the applet does not contain transaction
errors, performs no out of bounds operations on buffers, and never dereferences
null pointers.

The eID applet and helper classes consist of 1,004 lines of Java Card code. In
order to verify the project, we added 684 lines of VeriFast annotations (or about
seven lines of annotations for every ten lines of code). The majority of these
annotations were requires/ensures pairs (88 pairs, one for each method).
Remarkably, only 8 predicates are defined throughout the entire code base,
reflecting the design decision of the authors of the applet to write most of it as
one huge class file.

During the past months, a lot of progress has been made to reduce the
annotation overhead by automatically inferring open and close statements.
This progress can be clearly seen when we compare the first annotated version
of the eID applet with the latest version. In the first version, presented in [10],
the verification needed 99 open and 112 close statements. With the latest
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version of VeriFast, the number of required statements has been reduced to 26
and 17 respectively.

Another type of annotation overhead is the time it took to actually write
the annotations. The verification of the eID applet was performed by a senior
software engineer without prior experience with the VeriFast tool, but with
regular opportunities to consult VeriFast expert users during the verification
effort. We did not keep detailed effort logs, but a rough estimate of the effort
that was required is 20 man-days. This includes time spent learning the VeriFast
tool and the Java Card API specifications.

Bugs and Other Problems in the Applet. Because the eID applet in our case
study is aimed at developers, the authors did not spend a lot of time worrying
about card tearing. This is demonstrated by the fact that they did not use
the Java Card transaction system at all. Using VeriFast, we found 25 locations
where a card tear could cause the persistent memory to enter an inconsistent
state.

Three locations were found where a null pointer dereference could occur.
An additional three class casting problems were found, where a variable holding
a reference to the selected file (of type File) was cast to an ElementaryFile

instance. These bugs could be triggered by sending messages with invalid file
identifiers to the smart card. Seven potential out of bounds operations were also
found in the code. These bugs could be triggered by sending illegal messages to
the smart card.

4. Embedded Linux Network Management Software

The second case study presented in this article is on applying VeriFast to an
implementation of a Policy Enforcement Point (PEP) for Network Admission
Control scenarios. The case study originates from an industry partner of the
SecureChange project. Due to a non-disclosure agreement with that partner,
the case study, in particular the source code of PEP, cannot be revealed in full.

The PEP program consists of a total of 1194 lines of C code, including com-
ments. It is designed to run on embedded Linux-based gateways and facilitates
the application of security policies in Network Admission Control scenarios.
More specifically, for an authenticated network device, PEP will receive an ac-
cess policy from a Policy Decision Point. This policy is then put in place by
configuring the gateway’s network interfaces and firewall rules accordingly.

Case Study Goals and Verification Properties. The PEP implementation is split
into 9 C source files and 8 C header files. In total, 53 functions are implemented.
The core module of PEP is the file pep.c, which comprises 429 lines of code in
13 functions. Although PEP itself is relatively small, it involves a range of Linux
libraries – namely libpcap, libdumbnet, libssl, and the POSIX threads API – that
increase the complexity of the verification effort substantially.

For a thorough verification that proves the absence of runtime errors and
functional correctness, the entire PEP code, including the Linux system li-
braries would have to be annotated. While, having such a verified software
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stack would certainly be a great contribution, doing so is beyond the scope of
SecureChange. Thus, we restrict this case study to annotating a subset of
the above libraries’ APIs and the PEP program’s core component, pep.c.

In general, one would expect that post-hoc verification deals with a program
as-is and reports it to be either safe or pinpoints a number of defects – which
is exactly what VeriFast aims to do. Yet, since VeriFast is still a prototype its
support for the C language is incomplete, which forced us to modify the pro-
gram under verification in a few places. An important goal of the exercise was
to conduct the verification with as few of such modifications as possible so as
to efficiently communicate bugs reported by our verification team to the devel-
opers of the PEP program. Therefore VeriFast’s support for C was extended
substantially in the course of this project.

With respect to verification properties, we aimed at proving that the PEP
implementation does not perform illegal operations such as dividing by zero
or illegal memory accesses. PEP also exploits concurrency, using the POSIX
threading API. Thus, a second objective was to verify that the PEP implemen-
tation is free of data races. Considering that PEP implements essential security
functionality on a gateway by enforcing policies that protect network resources
from unauthorized access, violations of the above safety properties do have se-
curity implications. Examples for such cases are exploitable buffer overflows
(i.e., illegal memory access) or thread synchronization errors that may render
the PEP program unresponsive. The consequences of such bugs may be severe:
the gateway could be incapable of updating security policies or, even worse, set
up policies forged by an attacker.

4.1. Specification of Library APIs

Initially alarmed by PEP’s use of a number of Linux libraries for performing
network access, encryption and thread handling, we were interested in quantify-
ing the effective numbers of functions and type definitions from these libraries,
that had to be considered in the verification process. To extract a small but
sufficient core of required system headers, we generated pre-processed versions
of PEP’s source files (using the gcc C compiler’s -E option) and then iteratively
eliminated definitions that were not required for compiling PEP. The resulting
definitions were accumulated in a single header file sys includes.h that con-
tains a 99-lines excerpt of the libraries’ APIs and the Linux system header files.
After all, this file would contain only 20 function prototypes and 19 struct and
type definitions. To provide contracts for these functions, we implemented an-
notations that reflect the functions’ documented behavior. More specifically, we
consulted the libraries’ man-pages and online documentation to develop a total
of 162 lines of annotations that sufficiently describe the pre- and postconditions
of each function.

Wrapper Functions. For a small number of functions, such as pthread create()

from the POSIX threads API, or sscanf() from the standard C library, we de-
cided to implement wrapper functions so as to facilitate easier annotations. This
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is because VeriFast’s support for the C language is still incomplete. In partic-
ular, it does not support functions with a variable number of arguments and
function pointer declarations. To give examples for this, we compare and con-
trast the prototypes of pthread spin lock() and pthread create() as given
in pthread.h on a recent Linux system with the equivalent headers we anno-
tated for verifying the PEP program.

1 typedef unsigned long pthread_t;

2 typedef volatile int pthread_spinlock_t;

3
4 int pthread_spin_lock(pthread_spinlock_t *lock);

5
6 int pthread_create(pthread_t *thread , const pthread_attr_t

7 *attr , void *(* start_routine) (void *), void *arg);

The above listing presents an excerpt of the file pthread.h taken from an
up-to-date Linux installation. The full documentation of the two functions can
be found in the POSIX standard [11]5. Essentially, pthread create(thread,

attr, run, arg) creates a new thread which is executing run(arg). The
function pthread spin lock(lock) is used in thread synchronization to lock
a spin lock referenced by lock. As can be seen, the types pthread t and
pthread spinlock t both default to integers. Variables of these types may be
used to reference more elaborate data structures in the internal implementation
of POSIX threads, which is not exposed to the programmer.

In the following listing we present the annotated version of these function
prototypes. As can be seen, we annotated pthread spin lock directly but
renamed pthread create() by prefixing vf . The reason is that the type def-
inition for the parameter start routine in the original header file, a function
pointer definition, does not parse in the current version of VeriFast. In or-
der to quickly achieve verification results, we annotated a function that uses a
parameter void *run as the function pointer.

1 int pthread_spin_lock(pthread_spinlock_t *lock);

2 /*@ requires [?f] pthread_spinlock (lock , ?lockId , ?p)

3 &*& lockset(currentThread , ?locks)

4 &*& lock_below_top_x (lockId , locks) == true; @*/

5 /*@ ensures pthread_spinlock_locked (lock , lockId , p,

6 currentThread , f) &*& p()

7 &*& lockset(currentThread , cons(lockId , locks )); @*/

8
9 int vf_pthread_create(pthread_t *pthread , void *attr ,

10 void *run , void *arg);

11 /*@ requires is_thread_run_joinable (run) == true

12 &*& thread_run_pre (run )(arg , ?info)

13 &*& u_integer (pthread , _); @*/

14 /*@ ensures pthread_thread (? pthread_id , run , arg , info)

15 &*& u_integer (pthread , pthread_id ) @*/

5Header files and interface documentation of IEEE Std 1003.1-2008 are available online at
pubs.opengroup.org/onlinepubs/9699919799/.
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Our function contract for pthread create() guarantees that run points to a
function of the right type, which is captured by the is thread run joinable(run)

annotation. The predicate thread run pre(run)(...) encapsulates the pre-
conditions of the function run is pointing to, and pthread is the integer-type
thread ID assigned to each new thread by the pthread library to identify
the thread. Our annotations of pthread create() employ a ghost predicate
pthread thread for the same purpose. Yet, pthread thread may encapsulate
further information, such as a thread’s arguments, for verification purposes.

The annotations for pthread spin lock() require permission to some frac-
tion of a pthread spinlock predicate and a lockset are passed as arguments,
such that the particular lock identified by the information in pthread spinlock

is not an element of the lockset. The function ensures that a predicate chunk
pthread spinlock locked is produced and the lock is added to the lockset

for a symbolic execution in which no other thread is holding lock. The data
objects protected by lock are encapsulated in the predicate p, which can be
opened after pthread spin lock() terminated successfully.

To facilitate compilation and to actually run the annotated version of PEP,
which is essential to validate bug reports and to communicate confirmed errors to
the developers, we have to provide an implementation of vf pthread create().
As we show in the listing below, the wrapper for pthread create() is trivial to
implement since it only avoids prototype definitions that are incompatible from
the compiler’s point of view. That is, we use implicit casts to a generic void

pointer and back to the function pointer type. Our method contracts guarantee
the parameter run to be a valid function pointer. In the same way, implemen-
tations of all wrappers we employ is straightforward – they could be removed
by investing additional effort in extending VeriFast and further annotating the
system APIs.

1 int vf_pthread_create(pthread_t *thread , void *attr ,

2 void *run , void *arg)

3 { return(pthread_create(thread , attr , run , arg )); }

4.2. Verification of PEP

The verification effort on the PEP program consumed a total of about five
man-months starting from November 2010. An initial assessment of the feasi-
bility of applying VeriFast to PEP was carried out, concluding that verifying
PEP is viable. Yet, VeriFast’s support for C needed to be extended substan-
tially to support C language constructs that were not available in VeriFast back
then. Work on improving VeriFast and conducting extended case studies on
PEP consumed roughly three man-months. In particular, VeriFast now sup-
ports C arrays, global structs and nested structs, together with definitions of
a number of default types. The time dedicated exclusively to developing the
final annotations of the PEP sources is at the scale of two man-months. This
includes time spent to modify the PEP program so as to fix bugs by, e.g. adding
null-pointer checks and thread synchronization.

After specifying contracts for the Linux system APIs, PEP’s core file pep.c

and internal header files were annotated and verified with respect to our safety
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properties. Since VeriFast requires all functions declared in the code base to
have a pre- and post condition, we started with annotating these functions with
stub contracts such as the following:

1 void sendEAPoL(char *mac , char *eap , int len)

2 /*@ requires true; @*/

3 /*@ ensures true; @*/

4 { ...

Custom Preprocessing. The resulting source file would not parse correctly in
VeriFast since a number of features of the C compiler and preprocessor are
still not supported by VeriFast’s parser. In particular, this involves conditional
compilation and macro expansion6 and some uses of the sizeof operation. To
work around these issues, the build scripts of the PEP program were extended so
as to perform “custom preprocessing” by means of search-and-replace based on
regular expressions. Importantly, our verification process attempts to compile
the PEP program before invoking VeriFast. This is to make sure that we do
only verify a program source file that is still API compatible, with respect to
the C compiler’s weak type-checking, with the original. Ideally one would also
run a set of test cases to gain confidence that the program’s semantics did not
change. Yet, such test cases could not be obtained from the stake-holder of the
case study.

Basic Function Contracts. In a next step, the stub contracts of the functions
would be completed gradually to match the actual requirements of the imple-
mentation. For the above function sendEAPoL(), for example, the precondition
has to mention the function’s parameters and any global variables that may be
accessed:

1 void sendEAPoL(char *mac , char *eap , int len)

2 /*@ requires [?f1]array <char >(mac , ?mac_len , sizeof(char),

3 character , ?mac_chars )

4 &*& mac_len >= 6

5 &*& [?f3]array <char >(eap , ?eap_len , sizeof(char),

6 character , ?eap_chars )

7 &*& eap_len == len &*& 1 <= len && len <= 1024

8 &*& [?f4]pointer (&eth , ? eth_handle )

9 &*& [?f2]array <char >(& brmac , 6, sizeof(char),

10 character , ? brmac_chars ); @*/

11 /*@ ensures true; @*/

12 { ...

The first lines of the contract specify that sendEAPoL() requires access to
a fraction f1 of a byte array named mac, which stores mac len bytes, where
the assertion mac len >= 6 holds. Similarly, the following lines specify the
relation between the byte array eap and the parameter len. The last two lines
of the requires state that the function also needs access to two global variables,
namely eth and brmac.

6Preprocessor support has been added to VeriFast after work on this final part of the PEP
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Running VeriFast on a function annotated in this way will, given that the
function’s precondition is complete, most probably result in an error report
stating that sendEAPoL() leaks heap chunks. This is because our postcondition
does not specify anything about the input chunks of the function. Thus, VeriFast
will assume that the function is meant to destroy these chunks, which is not the
case here. In the example above we can simply mention all chunks from the
precondition as sendEAPoL() is not modifying any properties or assignments:

1 ... @*/

2 /*@ ensures [f1]array <char >(mac , mac_len , sizeof(char),

3 character , mac_chars)

4 &*& [f3]array <char >(eap , eap_len , sizeof(char),

5 character , eap_chars)

6 &*& [f4]pointer (&eth , eth_handle )

7 &*& [f2]array <char >(& brmac , 6, sizeof(char),

8 character , brmac_chars ); @*/

9 { char *buf;

10 char *eapol;

11 int leapol;

12 ...

13 encode ((char **)& eapol , &leapol , eap);

14 buf=malloc(leapol +14);

15 ...

16 eth_send(eth , buf , leapol +14);

17 }

Our function sendEAPoL(), however, will still not verify. As can be seen
in the above listing, sendEAPoL() invokes encode(), which is part of PEP,
as well as malloc() and eth send(), which are part of Linux’ C library and
libdumbnet, respectively. The contract of encode() specifies that this function
will assign to the first parameter (eapol) either NULL or a freshly allocated
buffer that holds a specific encoding of the data pointed to by the third pa-
rameter. malloc() typically allocates a fresh buffer or returns NULL, and
eth send() requires a pointer to a struct describing an Ethernet device eth

and a buffer buf of a length specified in the third parameter.
Obviously, if malloc() fails, the precondition of eth send() is not met.

Furthermore, if encode() and malloc() are successful there will be two fresh
heap chunks that are not mentioned in the postcondition of sendEAPoL().
Thus, VeriFast will report further memory leaks. Only after we have fixed
sendEAPoL() by checking the result of malloc() before calling eth send(),
and by deallocating the memory chunks pointed to by buf and eapol, the func-
tion will verify correctly.

To verify PEP’s core module pep.c all functions were annotated in this way.
In addition to simple pre- and postconditions, most functions will require loop
invariants7 and additional annotations that make transformations on VeriFast’s
symbolic heap explicit by, e.g. opening and closing predicates. Annotating the

case study started.
7A loop invariants in VeriFast is essentially a contract for a loop body; c.f. the VeriFast

tutorial mentioned in section 2.1.
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program in this manner, initially leaving concurrency aside, we wrote a total
of approximately 450 lines of annotations and discovered 28 bugs, similarly
to the two memory leaks and the NULL pointer dereference we identified in
sendEAPoL() above.

Adding Concurrency. Concurrency was only considered in the last step of the
verification effort. That is, initially we assumed calls to pthread create(), a
function from POSIX threads library which is used for creating a new thread, to
be equivalent to invoking the new thread’s start routine in a sequential context.
This allowed us to prepare initial method contracts for these start routines
without having to worry about sharing fractional permissions for heap chunks or
locking resources. However, adding fractions and deciding which global variables
actually need to be protected by locks was everything but trivial. Of course, the
familiarity with the code base gained in the previous phases of the cases study
helped a lot to revise the body of code and annotations.

In the course of specifying the concurrency related behavior of the PEP
program, we discovered another 13 bugs. Fixing these and finally verifying the
program correct was difficult, as this involved locking and unlocking resources
in several places.

VeriFast’s symbolic debugger turned out to be particularly useful in the step
of adding concurrency to the contracts. In general, most errors in interactive
verification with VeriFast manifest as a missing data object in VeriFast’s sym-
bolic memory. That is, the “chunk” in question may be absent altogether or it
might not have the expected properties, e.g. content, size or permissions. With
the debuggers ability to stepwise symbolic execution and backtracking, it be-
comes easy to find out where in program execution a particular chunk would be
consumed or where its properties change. This way we discovered a number of
program locations where or initial non-concurrent annotations over-approximate
the program’s behavior. A typical case of this would be two functions that read
a particular data object but are given full (write) permission to that object. Of
course, when concurrently running these two functions, only one of them may
actually get full permission to the data object and verification will fail. While
this error in the specification is easy to resolve, it shows the pattern by which
data races are detected: the two functions would attempt to write to the same
data object, and thus need full permission.

Details on the bugs we discovered and on the total amounts of annotations
and modifications we applied to PEP’s source code are given as verification
results in the following section.

4.3. Evaluation

The key result of the verification exercise reported on in this section certainly
is that we have proven a relatively complex example for an embedded network
management software correct with respect to a number of safety properties,
which substantially increases our confidence in the overall safety and security of
this software component.

24



Since the PEP program is production code that implements a security mod-
ule which has potentially been deployed with thousands of home gateways, our
expectations to find critical bugs were relatively low.

Errors Found and Error Severity. Surprisingly, we discovered a total of 41 bugs
in code. In more detail, our verification effort revealed 16 program locations at
which a null-pointer may be de-referenced, 6 memory leaks, 6 out-of-bounds
access on buffers, 6 global variables that are involved in race conditions, 4 cases
in which errors in input/output operations are not handled and 3 unconfirmed
functional errors.

The high number of NULL-pointer errors is largely due to the fact that,
throughout the code, the return value of calls to malloc() is typically not
checked to be unequal to NULL. Arguably, the programmer’s assumption is that
the PEP program allocates so few memory that malloc() will never fail. Yet,
the program allocates new buffers regularly throughout its execution, which, in
combination with the memory leaks we discovered, will inevitably lead to mem-
ory exhaustion. Especially since the program is intended to run on a low-cost
embedded device with rather limited resources, we consider the NULL-pointer
errors and memory leaks as a serious problem with respect to the reliability of
the PEP program.

The next group of severe bugs are those we report as buffer overflows. Out of
the six buffer overflows identified during verification, five are related to reading a
malformed configuration file. From a security perspective, this could be abused
if an attacker gains access to the configuration file. Evaluating the chances for
this is beyond the scope of our work.

More severe is the 6th out-of-bounds access that we detected. VeriFast
identified a buffer overread related to parsing a network package received by the
PEP program. That is, the PEP program employs the function pcap next()

provided by libpcap to read network packets from an interface. pcap next()

returns a pointer to a char buffer containing the raw packet data and assigns
a struct pcap pkthdr with status information of the buffer, including the size
of the packet buffer. The PEP implementation only checks whether this packet
buffer is at least 14 bytes long. Yet, under some conditions up to 18 bytes of
the buffer are read. The content of the overread 4 bytes is used to specify the
length and assignment of another buffer, which gives rise to an overflow. We did
not investigate whether this bug may be directly abused to manipulate PEP’s
control flow so as to gain access or to crash PEP.

Furthermore, we discovered a number of race conditions on global variables.
PEP spawns a number of threads that listen for particular packets on the several
network interfaces the program manages. Yet, all these threads’ operations
share some global variables to store data, such as MAC addresses, host names,
interface names, and file descriptors, that are assigned by one thread and used
by the others. We discovered that six of these globals were not protected by
appropriate mechanisms to prevent undefined program behavior due to data
races. However, the developers of PEP put some sleep() statements in place
to “ensure” that one thread receives sufficient CPU time to perform a set of
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critical operations before the next thread is started. Obviously, the developers
were aware of synchronization issues but decided, for unknown reasons, against
the use of locks or mutexes.

Effort and Overhead. To prove the PEP program correct, we attempted to fix
all the above errors. That is, we introduced a number of NULL-checks, free()
statements, and locks into the program and re-verified it to be correct. Impor-
tantly, our fixes make the program safe with respect to our API specifications.
Yet, it may still not be functionally correct. That is, e.g., adding and initializing
a global lock and pthread spin lock() and pthread spin unlock() directives
around each access to the particular data object the lock is intended to protect,
prevents that data object from being read from and written to at the same time.
This sort of locking does, however, not enforce the intended order of execution.
In a similar manner, failure of malloc() is handled by safely terminating the
program, which is most probably not what a security engineer’s advice would
be: terminating the PEP program might result in the gateway being unable
to grant or revoke privileges on demand. Thus, the decision on how to finally
address the programming errors discovered in our verification effort is left to
the developers and security engineers of our industry partner.

Initially, pep.c consisted of 429 non-empty lines of code. The file was mod-
ified by removing a number of printf() statements which were only executed
when the program runs in a “debug mode” but not in actual deployment sce-
narios. We further added 70 LOC to work around issues in VeriFast. Another
91 LOC were added to fix bugs in the code, resulting in pep.c containing 508
non-empty LOC. Finally, verifying pep.c required 801 lines of annotations in
that file, and another 215 lines of annotations for internal header files. A rel-
atively high effort of approximately two man-months was spent to verify the
program, producing 1.57 lines of annotations per line of source code for PEP’s
main source file. This annotation overhead is roughly twice as high as overheads
reported in the previous case study (c.f. Section 3), which is due to the involve-
ment of thread management and resource locking in PEP. The fully annotated
version of pep.c verifies in VeriFast in just under 20s on an 800 MHz AMD
Turion machine running Linux. The peak memory consumption of VeriFast is
31 MBytes.

5. Other Case Studies with VeriFast

Other nontrivial case studies have also been performed with VeriFast. This
section describes our experience with two additional case studies: a Linux driver
and an industrial Java Card applet.

5.1. The Linux USB BP Keyboard Driver

Kernel and driver code are particularly challenging types of software to ver-
ify. They contain a lot of low-level code to interact with hardware, and typically
also have strict synchronization and security requirements. However, because
they are of paramount importance to an operating system and because they are
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typically self-contained modules, they are excellent targets for software verifica-
tion.

There is not much published work that shows whether or not verification of
real-world kernel code is feasible. To work towards addressing this question, we
applied VeriFast on a device driver taken from the Linux kernel. The driver code
subject to verification is Linux’s USB Boot Protocol keyboard driver (usbkbd).
While being small, this driver contains a bigger than expected subset of ker-
nel driver complexity. It involves asynchronous callbacks, dynamic allocated
memory, synchronization and usage of complex APIs. During verification, we
identified and fixed a number of bugs. For these bugs we submitted patches
that have been accepted by the driver’s maintainer and included in Linux 3.3.

Verification of the driver is against the original API. Wrapper functions are
only used in a few cases where API functions return a struct (i.e. not a pointer
to a struct) because this is currently not supported by VeriFast. The APIs
that usbkbd uses are the USB API, the input API, spinlocks, and some generic
functions like memcpy. Verification thus consists of (1) writing formal speci-
fications for these APIs, based on official documentation and reading the API
implementation for the underspecified or undocumented parts, and (2) of adding
annotations to usbkbd.c. These annotations consist of contracts (pre- and post-
conditions written in separation logic), predicates to describe data structures,
predicate family instances to instantiate callback function contracts, lemmas
(i.e. ghost functions), and ghost-code like folding and unfolding predicates.

The verified properties are absence of data races in the presence of concurrent
callbacks, absence of illegal memory accesses, and correct API usage. This does
not include a formal proof of correctness of the hand-written API formalization.

usbkbd is one of the smallest Linux kernel drivers. It consists of 329 non-
empty lines of C code. Verifying the driver required 822 lines of annotations in
the driver’s code base, i.e. about 2.5 lines of annotations per line of source code.
The API specifications count up to 769 lines of code. On an Intel L9400 1.86GHz
running the verifier takes about one second. Writing annotations, studying the
API documentation, studying the API implementation for undocumented parts
and studying the driver implementation is estimated to sum up to about 56
working days. More details about this work can be found in Penninckx et
al. [12]. The annotated sources of usbkbd, specifications for the used APIs
and the patches submitted to the driver’s maintainer are available at http:

//people.cs.kuleuven.be/~willem.penninckx/usbkbd/.

5.2. An Industrial Java Card Applet

VeriFast was also used to verify the code of a Java Card applet that was
developed and supplied by a commercial smart card vendor in the context of
the SecureChange project.

The applet consists of 251 lines of Java Card code, which we annotated with
205 lines of VeriFast annotations. There were 13 requires/ensures pairs, 25
open statements and 29 close statements. It was annotated by a VeriFast
specialist and took about 5 man-days, excluding the time it took to add some
new required features to VeriFast.
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We found a number of bugs in the commercial applet, even though it had
already been verified with another verification technology [13] previously. We
found an unsafe API call, a handful of unchecked assumptions about incoming
APDUs, and four locations where transactions were not used properly. Clearly,
the tool used earlier was not sound or was not used in a sound way.

6. Related Work

In this section we give pointers to related verification tools that employ
separation logic and discuss software verification tools and case studies that are
relevant in the context of verifying Java Smart Card applets, low-level system
management software and operating system components. The reader is referred
to [2, 14] more background and a discussion of the related work on VeriFast.

6.1. Verification Using Separation Logic

Smallfoot [4] is a verification tool based on separation logic which given pre-
and post-conditions and loop invariants can fully automatically perform shape
analysis. It has been extended for greater automation [15], for termination
proofs [16, 17], fine-grained concurrency [18] and lock-based concurrency [19].

jStar [20] is an another automatic separation logic based verification tool
which targets Java. One only needs to provide the pre- and post-conditions
for each method, after which it attempts to verify it without extra help. It is
able to infer loop invariants, for which it uses a more generalized version of the
approach described by Distefano et al. [21]. This is achieved by allowing the
definition of user-defined rules (comparable to lemmas in VeriFast) which are
then used by the tool to perform abstraction on the heap state during the fixed
point computation.

A third verification tool based on shape analysis and separation logic is
SpaceInvader [21, 15], which performs shape analysis on C programs. Shape
analysis aims at automatically inferring, e.g., whether a variable points to a
cyclic or acyclic list. Shape analysis can be employed to verify pointer safety,
guaranteeing that the shape of data structures is maintained throughout pro-
gram execution. It has been applied to Windows [22] and Linux [15] drivers. Ab-
ductor [23], an extension of SpaceInvader, uses a generalized form of abduction,
which gives it the ability not only to infer loop invariants and postconditions,
but also preconditions. Notably, Abductor has been applied in large-scale
case studies on open source programs, sowing that bi-abduction is capable of
automatically synthesizing specifications for a majority of data structures used
in these programs [24]. We are investigating the integration of shape analysis
techniques into VeriFast with the goal of reducing the annotation burden [25].

6.2. Other Verification Techniques for Java Card Programs

The Extended Static Checker for Java (ESC/Java) [26] is another program
verifier that has been used to verify Java Card programs [27, 28]. However,
Esc/Java is unsound (c.f. Appendix C.0 of [29]). This means that Esc/Java can
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fail to detect certain bugs. For example, the extended static checker reasons
incorrectly about object invariants in the presence of reentrant calls. Unlike
Esc/Java, the VeriFast methodology has been proven to be sound [30].

Gomes et al. [31] have investigated using the B method to generate correct
Java Card implementations from abstract models via refinement. Contrary to
the B method, VeriFast does not start from an abstract model, but instead
reasons directly about the applet’s source code. The advantage of our approach
is that we can retroactively prove correctness of existing implementations.

To avoid having to write annotations, Huisman et al. [32] have used model
checking to find bugs in Java Card applications. Unlike VeriFast, Huisman et
al. do not aim to prove the absence of all errors, but only of certain undesired
applet interactions.

Mostowski [33] has written a specification for the Java Card API in dynamic
logic. In addition, he has used this specification to verify a number of applets
using the KeY [34] verifier. The KeY tool uses semiautomatic deductive verifi-
cation of Java code annotated with JML contracts – as described in the design
by contract paradigm – in order to statically prove the code’s correctness with
regards to its specifications. The approach has been further used to verify an
implementation of the Mondex electronic purse system [35]. A recurring prob-
lem encountered during these case studies was bad prover performance. For
example, Mostowski states that “it is not uncommon for the prover to run over
an hour to finish the proof of one method”. Contrary to [33], we use separation
logic to specify the Java Card API. While separation logic has proven to be a
powerful specification formalism for reasoning about complex (but small) exam-
ples such as design patterns and highly concurrent code, there is only limited
experience in applying separation logic to larger, realistic Java programs. This
article reports on our experience in applying separation logic to verify realistic
Java Card code. An explicit goal of VeriFast is to keep verification times low.
For example, the time needed to verify full functional correctness of a single
method is typically under one second.

6.3. Other Verification Techniques for C Programs

A number of automated tools for verifying C programs have been intro-
duced. Notably, CEGAR-based [36] model checkers such as BLAST [37] and
SLAM/SDV [38] have been applied to check the conformance of device drivers
with a set of API usage rules. In contrast with our work, these tools do not
provide support for identifying errors with respect to the inherently concurrent
execution environment device drivers are operating in. Focusing on API usage
rules, these tools either assume memory safety [38] or, as shown in [39], perform
poorly when checking OS components for memory safety.

In [40] a model checker with support for pointers, bit-vector operations and
concurrency is evaluated on a case study on Linux device drivers. The tool
checks for buffer overflows, pointer safety, division by zero and user-written as-
sertions. Yet, it requires a test harness with a fixed number of threads to be
generated for each driver. VeriFast, in contrast, handles concurrency implic-
itly, is sound, and implements assume-guarantee reasoning using generic API
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contracts. Therefore, VeriFast can check each function of a driver in isolation,
which contributes to the scalability of our approach.

Bounded model checking and symbolic execution have been successfully ap-
plied to the source code [41, 42] and to the object code [43] of kernel modules.
Unlike the VeriFast approach, these techniques are not generally sound but are
effective for finding bugs with little or no human interaction involved: bounded
model checking is neither sound nor complete and suffers from severe limita-
tions with respect to reasoning about concurrently executing programs. While
VeriFast can efficiently reason about such programs and actually prove the ab-
sence of errors, our approach requires extensive human-provided annotations.

A competing toolkit to VeriFast is the Verifying C Compiler (VCC) [44].
VCC verifies C programs annotated with contracts in Boogie. The tool generates
verification conditions from the annotated program, which are then discharged
by an SMT solver. As a result of this VCC does not ship with a symbolic de-
bugger such as VeriFast’s, that can be used to inspect traces of a program under
verification. VCC can be expected to require fewer annotations than VeriFast,
however, at the expense of a less predictable search time. The VCC toolkit has
been employed in a case study on verifying the Microsoft Hypervisor [45].

Other approaches to OS verification involve modeling and interactive proof.
Most notably, the L4.verified [46] project aims at producing a verified OS ker-
nel by establishing refinement relations between several layers of Isabelle/HOL
specifications, a prototypic kernel implementation in Haskell and the actual
kernel implementation in C and assembly. This differs from our work as we
do not employ refinement relations and verification is non-interactive. Also,
the case studies presented in this article do not focus on proving full functional
correctness.

7. Conclusion

This article reports on four industrial case studies with the VeriFast program
verifier. We present results and give details on source code annotations for an
open-source version of a Java Card applet that implements the Belgian electronic
ID card, and a commercial C-implementation of a Policy Enforcement Point
(PEP) for embedded Linux gateways. We further summarize two case studies,
one on a Linux device driver and one on an industrial Java Card applet. All
four programs have been verified for correctness with respect to the absence
of certain common programming errors. In particular, the verification checked
that the applications do not contain transaction errors, synchronization or multi-
threading errors, performed no out-of-bounds operations on buffers, and never
dereferenced null pointers or leak memory.

In all case studies, a number of bugs were discovered that could have an
impact on the stability and security of these systems. Notably, the PEP imple-
mentation that had been deployed on numerous home gateways, was found to
contain a surprisingly high number of memory safety bugs and race conditions,
some of which might have severe implications on the reliability and security
of the gateway. Also, the industrial Java Card applet that was already verified
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with another verification technology was found to still contain a number of bugs,
indicating that either the other verification technology was unsound or was used
in an unsound way.

Annotations & Annotation Overhead. The results of the case study are encour-
aging: the annotation overhead differs from case study to case study, but never
proved prohibitively large. The annotation overhead varies between 0.69 and 2.5
lines of annotation per line of code, with an average of 1.2 lines of annotations
per line of code. There is a huge difference in annotation overhead between our
Java case studies and the C case studies with an average of 0.71 versus 1.96
lines of annotations per line of code, which is largely due to the involvement of
concurrency in PEP and the USB BP Keyboard driver. All case studies con-
sumed between one and two person-months to conduct. On average, we verified
2.17 LOC per person-hour. As all case studies were carried out by researchers
with no or little prior experience with VeriFast, a steep learning curve was ex-
perienced. Thus, we believe that the human verification time per line of code
dropped considerably towards the end of each project.

Not included in the discussion above is the effort to specify library APIs.
Yet, in the case of PEP and the USB BP Keyboard driver these annotations
are quite substantial and amount to 449 and 769 lines, respectively. For well-
documented APIs, these specifications are fairly easy to develop since pre- and
post-conditions can be derived from the library’s documentation while the code
body of library functions is not to be considered. More importantly, annotating
APIs is typically a one-time effort and a succession of verification projects may
employ the results. A good example for this is the POSIX threads API that was
annotated in the PEP case study and is now part of the VeriFast distribution.
Also the Linux networking APIs could be re-used in a successive verification
of, e.g., a Policy Decision Point that provides the policies that are to be put in
place by the PEP program.

Absence of Run-Time Errors versus Functional Correctness. Throughout this
article we focus on proving the absence of run-time errors and data races in our
case studies. VeriFast, however, verifies that a function implementation satisfies
its specification given in terms of pre- and post-conditions. With this, the tool
is in general capable of verifying full functional correctness. For a number of
reasons, verifying the case studies for functional correctness was considered to
be beyond the scope of the project.

In particular, none of the programs we used as case studies was designed
with verification in mind. Specifications of those programs were given in terms
of informal prose or had to be reverse-engineered from the implementation. As
a result of this, several run-time errors that have been identified in the course of
our verification effort could only be fixed in a way such that the program does
not exhibit the erroneous behavior any more. It was left to the owners of the
case studies to decide whether our fixes conform with the intended behavior of
the program.

Furthermore, our annotations are considerable in size already, although only
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program behavior relevant for checking for the absence of run-time errors is
specified. For example, consider a function that returns a freshly allocated
string object containing a base64 encoding of some input data. In our approach
we may only provide annotations specifying that the function requires an input
string of length n and ensures that this input string is not modified, and that
a freshly allocated string of length m with n ≤ m is returned. Specifying
that this function performs the encoding correctly, and that its callers, e.g.
PEP’s sendEAPoL function, produces an RFC 5247 compliant EAP message,
etc., was plainly beyond our capacities and not requested by the owners of the
case studies. Yet, it would be interesting to experiment with more complete
specifications in the future.

Lessons Learned. The aim of the case studies described in this article was
to show that separation logic-based reasoning, as implemented in VeriFast,
can leverage software verification so that the post-hoc verification of critical
industrial-scale programs becomes feasible. We presented VeriFast as a general-
purpose software verification tool that combines an interactive verification expe-
rience with a high degree of automation and features reasoning about programs
that involve concurrency and dynamic memory allocation.

As mentioned earlier, all case studies were carried out by researchers with
almost no prior experience in using VeriFast. Yet, all investigators do have a
background in formal methods and VeriFast’s key developers were always avail-
able to help out. Thus, a steep learning curve was experienced while conduct-
ing the case studies, especially with respect to learning the annotation syntax,
understanding why seemingly correct contracts do not verify, working around
shortcomings in VeriFast’s support for C and Java, and acquiring an intuition
in how to efficiently annotate methods. VeriFast ships with an extensive tu-
torial and a large number of examples and test cases. Those helped a lot to
familiarize with the tool. Yet, being a research prototype, both documentation
and language support need to be updated and improved. Potentially we should
aim at integrating one of the case studies from this article into the tutorial
documentation.

Throughout our experiments, VeriFast’s symbolic debugger turned out to be
an indispensable tool. Being based on symbolic execution, the debugger presents
errors in terms of a path in the program under verification such that the pro-
gram location at which an assertion is violated is clearly displayed. It offers the
possibility for stepwise execution and backtracking on that path while moni-
toring variable assignments, the symbolic heap, and VeriFast’s assumptions. It
often becomes clear immediately, whether an error report is due to an error in
a contract, a missing verification step, or whether there is an actual bug in the
code. Furthermore, the symbolic debugger enables efficient communication of
error traces to software developers.

Applying VeriFast generally becomes easier in software projects with a well-
structured code base. That is, starting to annotate a number of small, separate
modules that interact via well-documented APIs yields quick feedback and a
feeling of success for the verification engineer. To some degree this has to do
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with VeriFast’s requirement to have all functions in a source file (and in imported
interfaces or header files) to be annotated before any analysis is performed. As
a result, one typically starts with stub annotations, as explained in Sec. 4.2,
that are then slowly extended to reflect the actual methods’ behavior. For
example, when verifying PEP’s main source file we had to start with annotating
all function declarations in that file and in all header files involved in the project
with stubs, dealing with VeriFast’s – back then – rather incomplete support
for the C language immediately with no easy achievements visible. A rather
discouraging part of the work.

With respect to handling concurrency, we experienced good results with first
annotating the project as if it was meant to execute sequentially. That is, our
initial contracts for functions such as pthread create(..., start routine,

...) assumed that start routine would be invoked directly, i.e. without start-
ing a new thread. This enabled us to develop valid contracts for all methods
before considering concurrent interactions in the program, keeping our annota-
tions initially simple and computation times in VeriFast short.

Final Remarks. Given the strong guarantees that VeriFast provides in return of
the annotation effort, and the empirical evidence of the many bugs we discovered
in the four case studies presented in this article, we are coming closer to the point
where the approach might in some projects be cost-effective. This is especially
true in the domain of security critical and safety critical applications, where
bugs may have severe consequences. We hope that the details we present on the
verification process, our annotations, and the advantages and pitfalls of using
VeriFast will be helpful for future industrial or academic verification projects.

Of course, VeriFast is under active development and its language support im-
proves gradually with each case study. For example, recent work on annotation
inference [25] has greatly reduced the amount of annotations that is required by
VeriFast, and we strive to further reduce the amount of required annotations in
future versions of VeriFast.
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