
Ghost-counters used in the verification of usbkbd

(draft text)

Willem Penninckx, Jan Tobias Mühlberg, Jan Smans, Bart Jacobs, and Frank Piessens

1 Introduction

This text was originally supposed to be part of the section in [1] about the parts
of verification that were considered harder. Because of page limits, this text was
not included in the [1].

See http://people.cs.kuleuven.be/~willem.penninckx/usbkbd/.
This text describes the ghost-counters used while performing verification of

Linux’s USB Boot Protocol keyboard driver (usbkbd). This is considered to be
one the most complex part of the verification approach. However, it was not
the most time-consuming.

This is only a draft text. Most authors should not be considered responsible
for any errors, inaccuracies and opinions expressed in this text.

2 Killable Asynchrounous Resubmittable Requests
with completion callback

Since both usb_kbd_event and usb_kbd_led submit the LED URB, they need
to be synchronized. This is done by a boolean representing whether the URB is
in progress and a spinlock protecting data including the boolean. usb_kbd_led
will thus need a fraction of the lock handle. As a result, usb_kbd_event will
need to give a fraction of his fraction of the lock handle to the usb_submit_urb

as part of the callback data that the callback (here usb_kbd_event) will receive.
Because the URB is submitted multiple times, the callback data (here fractions
of the lock handle) will be given to the USB API multiple times. They will be
given back when the URB is killed. If an URB is submitted n times, n times

This is a
simplifica-
tion. In fact,
the cb-out is
given back,
not the cb-
in. This is
explained
later on.

the callback data will be returned when the URB is killed.
In order to enforce good API usage, the USB API’s specifications ask to

prove that the caller has submitted the URB n times if it wants the callback-
data back n times. To facilitate this, usb_submit_urb returns a predicate that
we call a ticket that indicates the URB is submitted. usb_kill_urb gives n
times the callback predicate if it gets n tickets.

Note that we already introduced two counters: one counter that counts the
number of times an URB is submitted (i.e. the amount of tickets), and one that

1

http://people.cs.kuleuven.be/~willem.penninckx/usbkbd/


counts the number of times a fraction of the lock handle is put in a callback
data predicate. Since these two counters always have the same value, we only
use one ghost counter. We call this counter killcount.

usb_kbd_disconnect must be able to free the LED URB. In order to do this,
the struct containing the URB data must be obtained. This struct is contained
in the lock invariant (i.e. “the data the lock protects”) conditionally: if the
boolean representing whether the URB is in progress is false, the lock contains
the URB struct. Otherwise it does not since it is then owned by the URB API.
Note that usb_kbd_led receives the URB struct such that it can resubmit the
URB, but it can also store it in the spinlock if it does not resubmit.

Since usb_kbd_disconnect must obtain the URB struct, it must thus prove
that the boolean is false. To be able to do this, we introduce a second counter
cb_out_count which represent the number of times usb_kbd_led has returned
without resubmitting the URB. A completion callback has “incoming data”
(originally passed to usb_submit_urb), and “output data” (which will be given
back by usb_kill_urb). If a completion handler does not resubmit, it must
give back the output data in its postcondition. Otherwise, it must give back
the incoming data and the predicate representing the URB struct such that
the URB can be resubmitted by the USB API (note that resubmitting is thus
deferred until the completion handler returns).

The lock invariant contains the claim that cb_out_count equals killcount
if the boolean is false, and cb_out_count is one less than killcount otherwise.

So, usb_kbd_disconnect only needs to prove that the two counters are the
same, such that it can prove the boolean is false and take the URB struct out
of the lock invariant and free it. It is sufficient to prove (i.e. convince VeriFast)
that killcount=<cb_out_count.

Since usb_kbd_disconnect kills the LED URB, it gets killcount times the
callback “output data”. We will use a special counter for cb_out_count that
allows us to prove that cb_out_count is a least as big as killcount, provided
that we have killcount times the callback “output data”.

Let us now look at how the cb_out_count counter works. This counter is
just represented by a predicate with the counter value as one of the arguments.
By increasing the counter value, a ticket associated with the counter is returned.
Decreases eats one ticket. Given n tickets, the counter axioms state that the
counter must be at least n high. In order to allow this to work, creating a counter
requires a unique predicate, i.e. a predicate that can only have one instance for
its arguments. Otherwise you could exchange tickets between counters, which
would result in an important unsoundness. Creating a counter thus requires a
predicate and a proof that this predicate is unique; both need to be passed as
argument. Also note that we needs this uniqueness property to allow sharing
counters inside multiple predicates. Otherwise it would be unknown whether
two predicates containing the same counter are referring to the same counter
value.

By putting the tickets of cb_out_count in the callback “output data”, we
thus obtain killcount times this ticket, which allows us to prove that cb_out_
count>=killcount.

2



While we were able to perform verification by working out the details of the
above explained idea, we believe it would be nice if a more simple approach
would be applicable.

It is also intresting to see that the part that was the hardest to get verified,
was also the part that contained the bugs that we found in this driver. Originally,
the driver did not perform any real synchronization between usb_kbd_event and
usb_kbd_led, besides checking in a racy way whether the URB is in progress
by reading a field of the URB struct (outside the completion handler), which
is explicitly forbidden by the USB API documentation. The LED URB was
originally also never killed. The patches we made for fixing these bugs are
accepted by the maintainer of the driver.

References

[1] Willem Penninckx, Jan Tobias Mühlberg, Jan Smans, Bart Jacobs, and
Frank Piessens. Sound formal verification of Linux’s USB BP keyboard
driver. In NASA Formal Methods, April 2012.

3


	Introduction
	Killable Asynchrounous Resubmittable Requests with completion callback

